login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377631
E.g.f. satisfies A(x) = 1/(1 - x * A(x)^4 * exp(x*A(x)^4)).
2
1, 1, 12, 297, 11380, 593785, 39304206, 3155996557, 298106913336, 32391139027185, 3980284376962330, 545806093612966021, 82628400115183659012, 13688201250584241332809, 2463065653446247669021398, 478399017659163635014545405, 99757368661138669886988396016
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n+k+1,k)/( (4*n+k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n+k+1, k)/((4*n+k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 02 2024
STATUS
approved