login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042982
Number of degree-n irreducible polynomials over GF(2) with trace = 1 and subtrace = 1.
7
0, 1, 0, 1, 2, 2, 5, 8, 13, 27, 45, 85, 160, 288, 550, 1024, 1920, 3654, 6885, 13107, 24989, 47616, 91225, 174760, 335462, 645435, 1242600, 2396745, 4628480, 8947294, 17318945, 33554432, 65074253, 126324495, 245424829, 477218560, 928645120, 1808400384, 3524082400, 6871947672, 13408665600, 26178873147
OFFSET
1,5
LINKS
K. Cattell, C. R. Miers, F. Ruskey, J. Sawada and M. Serra, The Number of Irreducible Polynomials over GF(2) with Given Trace and Subtrace, J. Comb. Math. and Comb. Comp., 47 (2003) 31-64.
FORMULA
a(n) = (1/n) * Sum_{ L(n, k) : n+k = 3 mod 4}, where L(n, k) = Sum_{ mu(d)*binomial(n/d, k/d) : d|gcd(n, k)}.
MATHEMATICA
L[n_, k_] := Sum[ MoebiusMu[d]*Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]/n; a[n_] := Sum[ If[ Mod[n+k, 4] == 3, L[n, k], 0], {k, 0, n}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Jun 28 2012, from formula *)
PROG
(PARI)
L(n, k) = sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );
a(n) = sum(k=0, n, if( (n+k)%4==3, L(n, k), 0 ) ) / n;
vector(33, n, a(n))
/* Joerg Arndt, Jun 28 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved