login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042979 Number of degree-n irreducible polynomials over GF(2) with trace = 0 and subtrace = 1. 10
0, 0, 1, 0, 2, 2, 4, 8, 13, 24, 48, 80, 160, 288, 541, 1024, 1920, 3626, 6912, 13056, 24989, 47616, 91136, 174760, 335462, 645120, 1242904, 2396160, 4628480, 8947294, 17317888, 33554432, 65074253, 126320640, 245428574, 477211280, 928645120, 1808400384, 3524068955, 6871947672, 13408665600, 26178823218 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

K. Cattell, C. R. Miers, F. Ruskey, J. Sawada and M. Serra, The Number of Irreducible Polynomials over GF(2) with Given Trace and Subtrace, J. Comb. Math. and Comb. Comp., 47 (2003) 31-64.

F. Ruskey, Number of irreducible polynomials over GF(2) with given trace and subtrace

FORMULA

a(n) = (1/n) * Sum_{k=0..n, n+k == 0 (mod 4)} L(n, k), where L(n, k) = Sum_{d|gcd(n, k)} mu(d)*binomial(n/d, k/d).

MATHEMATICA

L[n_, k_] := Sum[ MoebiusMu[d]*Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]/n; a[n_] := Sum[ If[ Mod[n+k, 4] == 0, L[n, k], 0], {k, 0, n}]; Table[a[n], {n, 1, 32}] (* Jean-Fran├žois Alcover, Jun 28 2012, from formula *)

PROG

(PARI)

L(n, k) = sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );

a(n) = sum(k=0, n, if( (n+k)%4==0, L(n, k), 0 ) ) / n;

vector(33, n, a(n))

/* Joerg Arndt, Jun 28 2012 */

CROSSREFS

Cf. A042980, A042981, A042982.

Cf. A074027, A074028, A074029, A074030.

Sequence in context: A104700 A039941 A036761 * A000018 A306604 A075126

Adjacent sequences:  A042976 A042977 A042978 * A042980 A042981 A042982

KEYWORD

nonn

AUTHOR

Frank Ruskey

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 20:02 EDT 2020. Contains 337265 sequences. (Running on oeis4.)