login
A377622
a(n) is the number of iterations of x -> 6*x - 5 until (# composites reached) = (# primes reached), starting with prime(n).
1
7, 9, 1, 5, 13, 7, 9, 13, 1, 1, 5, 1, 7, 1, 7, 5, 7, 1, 5, 7, 5, 1, 1, 1, 7, 5, 5, 1, 1, 3, 3, 1, 1, 11, 1, 1, 3, 1, 3, 3, 5, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 11, 5, 1, 9, 7, 1, 5, 3, 1, 1, 7, 1, 5, 3, 1, 1, 1, 5, 3, 1, 3, 1, 1, 1, 5, 1, 3, 1
OFFSET
1,1
COMMENTS
For a guide to related sequences, see A377609.
EXAMPLE
Starting with prime(1) = 2, we have 6*2-5 = 7, then 6*7-5 = 37, etc., resulting in a chain 2, 7, 37, 217, 1297, 7777, 46657, 279937 having 4 primes and 4 composites. Since every initial subchain has fewer composites than primes, a(1) = 8-1 = 7. (For more terms from the mapping x -> 6x-5, see A062394.)
MATHEMATICA
chain[{start_, u_, v_}] := If[CoprimeQ[u, v] && start*u + v != start,
NestWhile[Append[#, u*Last[#] + v] &, {start}, !
Count[#, _?PrimeQ] == Count[#, _?(! PrimeQ[#] &)] &], {}];
chain[{Prime[1], 6, -5}]
Map[Length[chain[{Prime[#], 6, -5}]] &, Range[1, 100]] - 1
(* Peter J. C. Moses, Oct 31 2024 *)
CROSSREFS
Sequence in context: A175638 A091900 A222135 * A086318 A244674 A130834
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 20 2024
STATUS
approved