login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086318
Decimal expansion of asymptotic constant eta for counts of weakly binary trees.
4
7, 9, 1, 6, 0, 3, 1, 8, 3, 5, 7, 7, 5, 1, 1, 8, 0, 7, 8, 2, 3, 6, 2, 8, 4, 5, 5, 7, 2, 3, 2, 6, 8, 2, 2, 4, 0, 7, 1, 7, 4, 2, 4, 1, 8, 0, 9, 0, 7, 8, 9, 4, 6, 7, 3, 1, 2, 3, 0, 7, 8, 3, 0, 9, 9, 2, 2, 9, 0, 4, 4, 1, 5, 0, 3, 8, 9, 3, 2, 9, 2, 5, 5, 4, 4, 6, 6, 7, 9, 0, 8, 6, 8, 4, 0, 4, 6, 3, 0, 3, 8, 3
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6, p. 297.
LINKS
Eric Weisstein's World of Mathematics, Weakly binary tree.
FORMULA
Equals lim_{n->oo} A001190(n)*n^(3/2)/A086317^(n-1). - Vaclav Kotesovec, Apr 19 2016
EXAMPLE
0.791603183577511807823628455723268224071742418090789...
MATHEMATICA
digits = 102; c[0] = 2; c[n_] := c[n] = c[n - 1]^2 + 2; eta[n_Integer] := eta[n] = 1/2 * Sqrt[c[n]^2^(-n)/Pi] * Sqrt[3 + Sum[1/Product[c[j], {j, 1, k}], {k, 1, n}]]; eta[5]; eta[n = 10]; While[RealDigits[eta[n], 10, digits] != RealDigits[eta[n - 5], 10, digits], n = n + 5]; RealDigits[eta[n], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)
CROSSREFS
Sequence in context: A091900 A222135 A377622 * A244674 A130834 A132806
KEYWORD
nonn,cons,changed
AUTHOR
Eric W. Weisstein, Jul 15 2003
STATUS
approved