login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086316
Decimal expansion of estimate of the strongly triple-free set constant.
2
6, 1, 3, 4, 7, 5, 2, 6, 9, 2, 0, 2, 2, 3, 4, 4, 1, 6, 0, 1, 8, 0, 4, 1, 6, 6, 3, 8
OFFSET
0,1
LINKS
Steven R. Finch, Triple-Free Sets of Integers [From Steven Finch, Apr 20 2019]
Julien Cassaigne and Paul Zimmermann, Numerical Evaluation of the Strongly Triple-Free Constant (1996). [From Steven Finch, Feb 25 2009]
Julien Cassaigne and Paul Zimmermann, Numerical Evaluation of the Strongly Triple-Free Constant (pdf file, 1996).
Eric Weisstein's World of Mathematics, Triple-Free Set
EXAMPLE
0.613475269...
0.6134752692022344160180416638... - Steven Finch, Feb 25 2009
MATHEMATICA
f[k_, n_]:=1+Floor[FullSimplify[Log[n/3^k]/Log[2]]]; g[n_]:=Floor[FullSimplify[Log[n]/Log[3]]]; peven[n_]:=Sum[Quotient[f[k, n]+Mod[k+1, 2], 2], {k, 0, g[n]}]; podd[n_]:=Sum[Quotient[f[k, n]+Mod[k, 2], 2], {k, 0, g[n]}]; p[n_]:=Max[peven[n], podd[n]]; v[1]=1; j=1; k=1; n=4001; For[k=2, k=n, k++, If[2*v[k-j]<3^j, v[k]=2*v[k-j], {v[k]=3^j, j++}]]; Sum[p[v[n]]*(1/v[n]-1/v[n+1]), {n, 1, 4000}]/3 (* Steven Finch, Feb 25 2009 *)
CROSSREFS
Sequence in context: A218583 A181166 A273191 * A021167 A213204 A085677
KEYWORD
nonn,cons,more
AUTHOR
Eric W. Weisstein, Jul 15 2003
EXTENSIONS
More terms from Steven Finch, Feb 25 2009
STATUS
approved