login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086315
Decimal expansion of constant theta appearing in the expected number of pair of twin vacancies in a digital tree.
1
7, 7, 4, 3, 1, 3, 1, 9, 8, 5, 5, 3, 6, 8, 9, 6, 5, 9, 1, 4, 4, 6, 2, 8, 3, 8, 5, 6, 7, 4, 9, 7, 8, 4, 2, 9, 5, 5, 9, 3, 6, 5, 2, 8, 2, 8, 4, 1, 8, 8, 0, 8, 8, 8, 8, 6, 6, 5, 1, 8, 5, 5, 9, 1, 8, 3, 8, 3, 2, 9, 9, 7, 1, 5, 1, 7, 6, 2, 9, 2, 9, 0, 1, 5, 1, 0, 9, 4, 3, 9, 0, 7, 9, 9, 5, 5, 4, 3, 5, 6, 7, 5
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.13 Binary search tree constants, p. 356.
LINKS
Eric Weisstein's World of Mathematics, Tree Searching
FORMULA
Sum_{k>=1} k*2^(k*(k-1)/2))*(Sum_{j=1..k} 1/(2^j-1))/Product_{j=1..k} (2^j-1).
EXAMPLE
7.743131985536896591446283856749784...
MAPLE
theta:= sum((((k*2^(k*(k-1)/2)) *sum(1/(2^j-1), j=1..k))/
product(2^j-1, j=1..k)), k=1..infinity):
s:= convert(evalf(theta, 110), string):
map(parse, subs("."=[][], [seq(i, i=s)]))[]; # Alois P. Heinz, Jun 27 2014
MATHEMATICA
digits = 102; m0 = 100; dm = 100; Clear[theta]; theta[m_] := theta[m] = Sum[((k*2^(k*((k-1)/2)))*Sum[1/(2^j-1), {j, 1, k}])/Product[2^j-1, {j, 1, k}], {k, 1, m}] // N[#, digits+10]&; theta[m0]; theta[m = m0 + dm]; While[RealDigits[theta[m], 10, digits+10] != RealDigits[theta[m - dm], 10, digits+10], Print["m = ", m]; m = m + dm]; RealDigits[theta[m], 10, digits] // First (* Jean-François Alcover, Jun 27 2014 *)
digits = 102; theta = NSum[((k*2^(k*((k-1)/2)))*((QPolyGamma[0, 1+k, 1/2] - QPolyGamma[0, 1, 1/2])/Log[2]))/((-1)^k*QPochhammer[2, 2, k]), {k, 1, Infinity}, WorkingPrecision -> digits+5, NSumTerms -> 3*digits]; RealDigits[theta, 10, digits] // First (* Jean-François Alcover, Nov 19 2015 *)
CROSSREFS
Sequence in context: A198544 A353127 A247274 * A185577 A201517 A010513
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 15 2003
STATUS
approved