OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.13 Binary search tree constants, p. 356.
LINKS
Eric Weisstein's World of Mathematics, Tree Searching
FORMULA
Sum_{k>=1} k*2^(k*(k-1)/2))*(Sum_{j=1..k} 1/(2^j-1))/Product_{j=1..k} (2^j-1).
EXAMPLE
7.743131985536896591446283856749784...
MAPLE
theta:= sum((((k*2^(k*(k-1)/2)) *sum(1/(2^j-1), j=1..k))/
product(2^j-1, j=1..k)), k=1..infinity):
s:= convert(evalf(theta, 110), string):
map(parse, subs("."=[][], [seq(i, i=s)]))[]; # Alois P. Heinz, Jun 27 2014
MATHEMATICA
digits = 102; m0 = 100; dm = 100; Clear[theta]; theta[m_] := theta[m] = Sum[((k*2^(k*((k-1)/2)))*Sum[1/(2^j-1), {j, 1, k}])/Product[2^j-1, {j, 1, k}], {k, 1, m}] // N[#, digits+10]&; theta[m0]; theta[m = m0 + dm]; While[RealDigits[theta[m], 10, digits+10] != RealDigits[theta[m - dm], 10, digits+10], Print["m = ", m]; m = m + dm]; RealDigits[theta[m], 10, digits] // First (* Jean-François Alcover, Jun 27 2014 *)
digits = 102; theta = NSum[((k*2^(k*((k-1)/2)))*((QPolyGamma[0, 1+k, 1/2] - QPolyGamma[0, 1, 1/2])/Log[2]))/((-1)^k*QPochhammer[2, 2, k]), {k, 1, Infinity}, WorkingPrecision -> digits+5, NSumTerms -> 3*digits]; RealDigits[theta, 10, digits] // First (* Jean-François Alcover, Nov 19 2015 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 15 2003
STATUS
approved