login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130834
Decimal expansion of the limit of the (2/n^2)-th power of the number of distinct dimer coverings on the n X n square grid, n even, as n goes to infinity.
11
1, 7, 9, 1, 6, 2, 2, 8, 1, 2, 0, 6, 9, 5, 9, 3, 4, 2, 4, 7, 3, 0, 5, 4, 7, 0, 8, 9, 3, 4, 2, 9, 8, 2, 4, 3, 2, 2, 6, 8, 1, 3, 4, 3, 9, 3, 1, 3, 2, 9, 5, 4, 7, 6, 7, 7, 6, 7, 5, 8, 3, 4, 7, 6, 4, 9, 9, 4, 2, 5, 0, 7, 4, 2, 3, 7, 6, 5, 7, 8, 9, 6, 0, 1, 3, 2, 2, 6
OFFSET
1,2
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 232, 407.
LINKS
Steven R. Finch, Several Constants Arising in Statistical Mechanics, Ann. Comb. 3(2-4) (1999), 323-335.
Antonio Gracia Llorente, Infinite Product Formula Involving the Catalan's Constant, OSF Preprint, 2024.
FORMULA
Equals exp(2*A006752/A000796).
Equals A097469^2. - Vaclav Kotesovec, Dec 30 2020
Equals Product_{k>=1} (((4*k-1)^3*(4*k+3))/((4*k+1)^3*(4*k-3)))^k. - Antonio Graciá Llorente, Jul 22 2024
EXAMPLE
1.791622812069593424730547089...
MAPLE
evalf(exp(2*Catalan/Pi));
MATHEMATICA
RealDigits[Exp[(2*Catalan)/Pi], 10, 120][[1]] (* Harvey P. Dale, Jul 17 2011 *)
PROG
(PARI) exp(2*Catalan/Pi) \\ Charles R Greathouse IV, Jul 15 2014
(Magma) R:=RealField(100); Exp(2*Catalan(R)/Pi(R)); // G. C. Greubel, Aug 23 2018
CROSSREFS
Cf. A000796 (Pi), A006752 (Catalan), A097469, A229728.
Sequence in context: A377622 A086318 A244674 * A132806 A016629 A154203
KEYWORD
cons,nonn,changed
AUTHOR
R. J. Mathar, Jul 18 2007
STATUS
approved