login
A130833
Sums of two or more distinct 4th powers of primes.
2
97, 641, 706, 722, 2417, 2482, 2498, 3026, 3042, 3107, 3123, 14657, 14722, 14738, 15266, 15282, 15347, 15363, 17042, 17058, 17123, 17139, 17667, 17683, 17748, 17764, 28577, 28642, 28658, 29186, 29202, 29267, 29283, 30962, 30978, 31043, 31059, 31587, 31603
OFFSET
1,1
COMMENTS
This is to cubes and A030078 as A192926 is to 4th powers and A030514. The subsequence of primes which are sums of two or more distinct 4th powers of primes begins 97, 641, 2417 (A193411).
The first term that arises in more than one way is 6539044 = 11^4 + 23^4 + 41^4 + 43^4 = 13^4 + 29^4 + 31^4 + 47^4. - Robert Israel, Apr 27 2020
LINKS
FORMULA
{A030078(i) + A030078(j) for i not equal to j} UNION {A030078(i) + A030078(j) + A030078(k) for i not equal to j not equal to k} UNION {A030078(i) + A030078(j) + A030078(k) + A030078(L) for i not equal to j not equal to k not equal to L}...
EXAMPLE
a(1) = 97 = 2^4 + 3^4.
a(2) = 641 = 2^4 + 5^4.
a(3) = 706 = 3^4 + 5^4.
a(4) = 722 = 2^4 + 3^4 + 5^4.
MAPLE
N:= 40000: # for all terms <= N
S1:= {}:
S2:= {}:
p:= 1:
do
p:= nextprime(p);
if p^4 > N then break fi;
s:= p^4;
S2:= S2 union select(`<=`, map(`+`, S1 union S2, s), N);
S1:= S1 union {s};
od:
sort(convert(S2, list)); # Robert Israel, Apr 27 2020
MATHEMATICA
nn=6; t = Sort@ Flatten@ Table[ n^4, {n, Prime@ Range@ nn}]; Select[Sort[
Plus @@@ Subsets[t, {2, nn}]], # < Prime[nn-1]^4 + Prime[nn]^4 &] (* Robert G. Wilson v, Jul 22 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Jul 21 2011
STATUS
approved