login
A144131
Primes of the form T_4(n), where T_4(x) = 8x^4 - 8x^2 + 1 is the fourth Chebyshev polynomial (of the first kind).
6
97, 577, 4801, 32257, 79201, 305761, 665857, 1039681, 7380481, 8380417, 10681441, 11995201, 18495361, 42448897, 49980001, 54100801, 63101377, 68001121, 96911041, 110736961, 227143297, 266851201, 296071777, 398240641, 479694337
OFFSET
1,1
COMMENTS
Sequence is infinite under Bunyakovsky's conjecture. - Charles R Greathouse IV, May 29 2013
LINKS
MAPLE
T4:= unapply(orthopoly[T](4, x), x):
select(isprime, map(T4, [$0..300])); # Robert Israel, Apr 27 2020
MATHEMATICA
lst={}; Do[p=ChebyshevT[4, n]; If[PrimeQ[p], AppendTo[lst, p]], {n, 9^3}]; lst
PROG
(PARI) select(isprime, vector(100, n, polchebyshev(4, 1, n))) \\ Charles R Greathouse IV, May 29 2013
CROSSREFS
Cf. A144130.
Sequence in context: A204710 A142765 A144130 * A362321 A130833 A130873
KEYWORD
nonn
AUTHOR
STATUS
approved