The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144133 Gegenbauer polynomial C_n^2(3). 2
 1, 12, 106, 828, 6051, 42408, 288788, 1925736, 12637733, 81897876, 525360702, 3341936196, 21109664455, 132544828560, 827948567080, 5148653356944, 31891223012553, 196848686563164, 1211273655997202, 7432579805359884 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Eric Weisstein's World of Mathematics, Gegenbauer Polynomial. Wikipedia, Gegenbauer polynomials Index entries for linear recurrences with constant coefficients, signature (12,-38,12,-1) FORMULA From Michael Somos, May 11 2012: (Start) G.f.: 1 / (1 - 6*x + x^2)^2. a(-4 - n) = -a(n). Convolution square of A001109. (End) From Emanuele Munarini, Mar 07 2018: (Start) a(n) = (1/4)*Sum_{k=0..n} p(2*k+1)*p(2*n-2*k+1) = (1/32)*(14*n+13)*p(2*n+1) + (3/16)*(n+1)*p(2*n), where the p(n) = A000129(n+1) are Pell numbers. a(n+4) - 12*a(n+3) + 38*a(n+2) - 12*a(n+1) + a(n) = 0. (End) EXAMPLE 1 + 12*x + 106*x^2 + 828*x^3 + 6051*x^4 + 42408*x^5 + ... MATHEMATICA lst={}; Do[AppendTo[lst, GegenbauerC[n, 2, 3]], {n, 0, 8^3}]; lst LinearRecurrence[{12, -38, 12, -1}, {1, 12, 106, 828}, 100] (* Emanuele Munarini, Mar 07 2018 *) PROG (PARI) {a(n) = local(s=1); if( n<0, n = -4 - n; s=-1); s * polcoeff( 1 / (1 - 6*x + x^2)^2 + x * O(x^n), n)} /* Michael Somos, May 11 2012 */ (Maxima) makelist(ultraspherical(n, 2, 3), n, 0, 24); /* Emanuele Munarini, Mar 07 2018 */ CROSSREFS Cf. A000129, A001109. Sequence in context: A027142 A090816 A244722 * A089396 A218111 A166755 Adjacent sequences:  A144130 A144131 A144132 * A144134 A144135 A144136 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Sep 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 19:05 EST 2021. Contains 349415 sequences. (Running on oeis4.)