login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176129
Number A(n,k) of solid standard Young tableaux of shape [[n*k,n],[n]]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
14
1, 1, 0, 1, 2, 0, 1, 6, 16, 0, 1, 12, 174, 192, 0, 1, 20, 690, 7020, 2816, 0, 1, 30, 1876, 52808, 325590, 46592, 0, 1, 42, 4140, 229680, 4558410, 16290708, 835584, 0, 1, 56, 7986, 738192, 31497284, 420421056, 854630476, 15876096, 0
OFFSET
0,5
COMMENTS
In general, column k is (for k > 1) asymptotic to sqrt((k+2)*(k^2 - 20*k - 8 + sqrt(k*(k+8)^3)) / (8*k^3)) * ((k+2)^(k+2)/k^k)^n / (Pi*n). - Vaclav Kotesovec, Aug 31 2014
LINKS
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 6, 12, 20, 30, ...
0, 16, 174, 690, 1876, 4140, ...
0, 192, 7020, 52808, 229680, 738192, ...
0, 2816, 325590, 4558410, 31497284, 146955276, ...
0, 46592, 16290708, 420421056, 4600393936, 31113230148, ...
MAPLE
b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y), `if`(z>x, 0,
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0))))
end:
A:= (n, k)-> b(n*k, n, n):
seq(seq(A(n, d-n), n=0..d), d=0..8);
MATHEMATICA
b [x_, y_, z_] := b[x, y, z] = If[z > y, b[x, z, y], If[z > x, 0, If[Union[{x, y, z}] == {0}, 1, If[x > y && x > z, b[x-1, y, z], 0] + If[y > 0, b[x, y-1, z], 0] + If[z > 0, b[x, y, z-1], 0]]]]; a[n_, k_] := b[n*k, n, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
CROSSREFS
Rows n=0-3 give: A000012, A002378, A215687, A215688.
Main diagonal gives: A215123.
Sequence in context: A337107 A362588 A367073 * A362787 A341200 A300130
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 29 2012
STATUS
approved