OFFSET
0,5
COMMENTS
In general, column k is (for k > 1) asymptotic to sqrt((k+2)*(k^2 - 20*k - 8 + sqrt(k*(k+8)^3)) / (8*k^3)) * ((k+2)^(k+2)/k^k)^n / (Pi*n). - Vaclav Kotesovec, Aug 31 2014
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 6, 12, 20, 30, ...
0, 16, 174, 690, 1876, 4140, ...
0, 192, 7020, 52808, 229680, 738192, ...
0, 2816, 325590, 4558410, 31497284, 146955276, ...
0, 46592, 16290708, 420421056, 4600393936, 31113230148, ...
MAPLE
b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y), `if`(z>x, 0,
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0))))
end:
A:= (n, k)-> b(n*k, n, n):
seq(seq(A(n, d-n), n=0..d), d=0..8);
MATHEMATICA
b [x_, y_, z_] := b[x, y, z] = If[z > y, b[x, z, y], If[z > x, 0, If[Union[{x, y, z}] == {0}, 1, If[x > y && x > z, b[x-1, y, z], 0] + If[y > 0, b[x, y-1, z], 0] + If[z > 0, b[x, y, z-1], 0]]]]; a[n_, k_] := b[n*k, n, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 29 2012
STATUS
approved