login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214801
Number of solid standard Young tableaux of shape [[2*n,n],[n]].
6
1, 6, 174, 7020, 325590, 16290708, 854630476, 46305862488, 2568272967270, 144984584562180, 8298621602461476, 480298712286979560, 28052543639835133692, 1650956086756046986440, 97790578929910135588440, 5824509559447044190027952, 348581174512709008160833158
OFFSET
0,2
LINKS
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
FORMULA
Recurrence: (n-1)*n^2*(2*n-1)*(2*n+1)*(4*n-1)*(4*n+1)*(392*n^4 - 2044*n^3 + 4216*n^2 - 3944*n + 1377)*a(n) = 2*(n-1)*(1859648*n^10 - 13670048*n^9 + 43255264*n^8 - 75152192*n^7 + 75863336*n^6 - 41825576*n^5 + 7317576*n^4 + 5067372*n^3 - 3441344*n^2 + 785094*n - 59535)*a(n-1) - 4*(2*n-3)*(4*n-7)*(4*n-5)*(1310848*n^8 - 7998592*n^7 + 19695952*n^6 - 24269488*n^5 + 15125236*n^4 - 3514192*n^3 - 1066614*n^2 + 533457*n - 45927)*a(n-2) + 5184*n*(2*n-5)*(2*n-3)*(4*n-11)*(4*n-9)*(4*n-7)*(4*n-5)*(392*n^4 - 476*n^3 + 436*n^2 - 76*n - 3)*a(n-3). - Vaclav Kotesovec, Aug 31 2014
a(n) ~ sqrt((5*sqrt(5)-11)/4) * 64^n / (Pi*n). - Vaclav Kotesovec, Aug 31 2014
MAPLE
b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y),
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0)))
end:
a:= n-> b(2*n, n, n):
seq(a(n), n=0..20);
MATHEMATICA
b[x_, y_, z_] := b[x, y, z] = If[z>y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; a[n_] := b[2n, n, n]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
CROSSREFS
Central row elements of A214775.
Column k=2 of A176129.
Sequence in context: A317795 A166762 A323279 * A233225 A055165 A318538
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 28 2012
STATUS
approved