login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214775
Number T(n,k) of solid standard Young tableaux of shape [[n,k],[n-k]]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
8
1, 1, 1, 2, 6, 2, 5, 25, 25, 5, 14, 98, 174, 98, 14, 42, 378, 962, 962, 378, 42, 132, 1452, 4804, 7020, 4804, 1452, 132, 429, 5577, 22689, 43573, 43573, 22689, 5577, 429, 1430, 21450, 103510, 245962, 325590, 245962, 103510, 21450, 1430
OFFSET
0,4
COMMENTS
T(n,k) is odd if and only if n = 2^i-1 for i in {0, 1, 2, ... } = A001477.
LINKS
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
2, 6, 2;
5, 25, 25, 5;
14, 98, 174, 98, 14;
42, 378, 962, 962, 378, 42;
132, 1452, 4804, 7020, 4804, 1452, 132;
...
MAPLE
b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y),
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0)))
end:
T:= (n, k)-> b(n, k, n-k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[x_, y_, z_] := b[x, y, z] = If[z>y, b[x, z, y], If[Union[{x, y, z}] == {0}, 1, If[x>y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; T[n_, k_] := b[n, k, n-k]; Table[T[n, k] , {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
PROG
(Sage)
@CachedFunction
def B(x, y, z) :
if z > y : return B(x, z, y)
if x==y and y==z and z==0 : return 1
a = B(x-1, y, z) if x>y and x>z else 0
b = B(x, y-1, z) if y>0 else 0
c = B(x, y, z-1) if z>0 else 0
return a + b + c
T = lambda n, k: B(n, k, n-k)
[[T(n, k) for k in (0..n)] for n in (0..10)]
# After Maple code of Alois P. Heinz. Peter Luschny, Jul 30 2012
CROSSREFS
Columns 0-5 give: A000108, A214955, A215298, A215299, A215300, A215301.
Row sums give: A215002.
Central row elements give: A214801.
Sequence in context: A064850 A151853 A268766 * A196201 A342982 A128045
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 28 2012
STATUS
approved