login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268766
T(n,k)=Number of nXk binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
7
0, 1, 1, 2, 6, 2, 5, 15, 15, 5, 10, 44, 56, 44, 10, 20, 105, 223, 223, 105, 20, 38, 258, 762, 1148, 762, 258, 38, 71, 595, 2607, 5170, 5170, 2607, 595, 71, 130, 1368, 8500, 23156, 32056, 23156, 8500, 1368, 130, 235, 3069, 27411, 99057, 193573, 193573, 99057
OFFSET
1,4
COMMENTS
Table starts
...0....1......2.......5........10.........20...........38............71
...1....6.....15......44.......105........258..........595..........1368
...2...15.....56.....223.......762.......2607.........8500.........27411
...5...44....223....1148......5170......23156........99057........418924
..10..105....762....5170.....32056.....193573......1129042.......6475898
..20..258...2607...23156....193573....1552272.....12111209......92571436
..38..595...8500...99057...1129042...12111209....127676872....1312123185
..71.1368..27411..418924...6475898...92571436...1312123185...18045771274
.130.3069..86622.1736105..36505596..696659613..13311824510..245588158242
.235.6830.270955.7122856.203462597.5178525870.133228716170.3292985469950
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4)
k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6)
k=4: [order 8]
k=5: [order 12]
k=6: [order 16]
k=7: [order 28]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .1..0..0..0. .1..0..0..1. .0..0..0..1. .0..1..1..0
..0..1..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..0..0..1. .0..1..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..1
..0..1..0..0. .0..1..0..0. .0..1..0..0. .1..0..0..1. .0..1..0..0
CROSSREFS
Column 1 is A001629.
Column 2 is A193449.
Sequence in context: A102912 A064850 A151853 * A214775 A196201 A342982
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 13 2016
STATUS
approved