|
|
A268769
|
|
Number of n X 3 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
|
|
1
|
|
|
12, 32, 112, 446, 1524, 5214, 17000, 54822, 173244, 541910, 1676448, 5146030, 15683076, 47518926, 143238872, 429867830, 1285009740, 3828046534, 11368576272, 33669165246, 99465517716, 293175780030, 862355454792, 2531766659654
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) - a(n-4) + 12*a(n-5) - 4*a(n-6) for n>8.
Empirical g.f.: 2*x*(6 - 8*x - 20*x^2 + 63*x^3 + 20*x^4 - 47*x^5 + 4*x^6 + 4*x^7) / (1 - 2*x - 3*x^2 + 2*x^3)^2. - Colin Barker, Jan 15 2019
|
|
EXAMPLE
|
Some solutions for n=4:
..1..0..0. .1..0..0. .0..0..0. .1..2..1. .1..1..0. .2..2..2. .1..2..1
..0..0..0. .1..0..0. .1..1..0. .1..2..2. .0..0..0. .1..2..2. .1..2..2
..1..0..1. .0..0..0. .0..0..0. .2..2..1. .0..0..0. .2..2..1. .2..2..2
..0..0..1. .1..0..0. .1..0..0. .1..2..2. .1..0..1. .2..1..2. .1..2..2
|
|
CROSSREFS
|
Column 3 of A268774.
Sequence in context: A143238 A102091 A303079 * A045669 A045660 A334307
Adjacent sequences: A268766 A268767 A268768 * A268770 A268771 A268772
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Feb 13 2016
|
|
STATUS
|
approved
|
|
|
|