login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143238
a(n) = A000203(n) * A024916(n).
2
1, 12, 32, 105, 126, 396, 328, 840, 897, 1566, 1188, 3556, 1974, 3960, 4536, 6820, 4284, 10803, 5940, 14238, 11872, 14652, 10344, 29460, 16182, 23688, 24160, 36960, 20700, 54864, 25408, 53991, 43440, 51786, 48336, 99918, 43168, 71760, 70112, 120780, 58128, 142080
OFFSET
1,2
LINKS
FORMULA
a(n) = A000203(n) * A024916(n).
a(n) = Sum_{k=1..n} A143237(n, k).
EXAMPLE
a(4) = 105 = A000203(4) * A024916(4) = 7 * 15.
a(4) = 105 = sum of row 4 terms of triangle A143237: (7, + 21, + 28 + 49).
MATHEMATICA
sigma = Table[DivisorSigma[1, n], {n, 1, 50}]; sigma * Accumulate[sigma] (* Amiram Eldar, Feb 26 2020 *)
PROG
(Python)
from math import isqrt
from sympy import divisor_sigma
def A143238(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1, s+1))>>1)*divisor_sigma(n) # Chai Wah Wu, Oct 23 2023
(Magma)
A143238:= func< n | DivisorSigma(1, n)*(&+[k*Floor(n/k): k in [1..n]]) >;
[A143238(n): n in [1..100]]; // G. C. Greubel, Sep 12 2024
(SageMath)
def A143238(n): return sigma(n, 1)*sum(k*int(n//k) for k in range(1, n+1))
[A143238(n) for n in range(1, 101)] # G. C. Greubel, Sep 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Aug 01 2008
EXTENSIONS
More terms from Amiram Eldar, Feb 26 2020
STATUS
approved