login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268768
Number of n X 2 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
1
3, 12, 32, 100, 248, 620, 1456, 3380, 7656, 17148, 37920, 83140, 180824, 390796, 839824, 1796180, 3825352, 8116764, 17165568, 36195300, 76118840, 159694252, 334301552, 698429300, 1456510888, 3032326460, 6303262176, 13083742980
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>5.
Conjectures from Colin Barker, Jan 14 2019: (Start)
G.f.: x*(3 + 6*x - x^2 + 12*x^3 + 12*x^4) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = (4/27)*(7*((-1)^n-2^n) + 3*((-1)^n + 2^(2+n))*n) for n>1.
(End)
EXAMPLE
Some solutions for n=4:
..1..2. .0..1. .2..1. .0..1. .1..0. .2..1. .0..1. .1..1. .0..0. .2..1
..2..2. .0..0. .2..2. .1..0. .0..1. .2..2. .0..0. .2..2. .0..0. .1..2
..1..1. .1..0. .2..1. .0..0. .0..0. .1..2. .0..0. .2..2. .0..1. .2..2
..0..0. .0..1. .1..2. .1..0. .0..1. .1..2. .1..1. .1..2. .1..0. .2..1
CROSSREFS
Column 2 of A268774.
Sequence in context: A309693 A365738 A288605 * A174963 A054602 A083725
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 13 2016
STATUS
approved