|
|
A268768
|
|
Number of n X 2 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
|
|
1
|
|
|
3, 12, 32, 100, 248, 620, 1456, 3380, 7656, 17148, 37920, 83140, 180824, 390796, 839824, 1796180, 3825352, 8116764, 17165568, 36195300, 76118840, 159694252, 334301552, 698429300, 1456510888, 3032326460, 6303262176, 13083742980
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>5.
Conjectures from Colin Barker, Jan 14 2019: (Start)
G.f.: x*(3 + 6*x - x^2 + 12*x^3 + 12*x^4) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = (4/27)*(7*((-1)^n-2^n) + 3*((-1)^n + 2^(2+n))*n) for n>1.
(End)
|
|
EXAMPLE
|
Some solutions for n=4:
..1..2. .0..1. .2..1. .0..1. .1..0. .2..1. .0..1. .1..1. .0..0. .2..1
..2..2. .0..0. .2..2. .1..0. .0..1. .2..2. .0..0. .2..2. .0..0. .1..2
..1..1. .1..0. .2..1. .0..0. .0..0. .1..2. .0..0. .2..2. .0..1. .2..2
..0..0. .0..1. .1..2. .1..0. .0..1. .1..2. .1..1. .1..2. .1..0. .2..1
|
|
CROSSREFS
|
Column 2 of A268774.
Sequence in context: A037236 A309693 A288605 * A174963 A054602 A083725
Adjacent sequences: A268765 A268766 A268767 * A268769 A268770 A268771
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Feb 13 2016
|
|
STATUS
|
approved
|
|
|
|