login
A196201
T(n,k) counts ordered complete ternary trees with 2*n-1 leaves having k internal vertices colored black, the remaining n-1-k internal vertices colored white, and such that each vertex and its rightmost child have different colors.
2
1, 1, 1, 2, 6, 2, 5, 28, 28, 5, 14, 120, 230, 120, 14, 27, 326, 985, 985, 326, 27, 56, 877, 3701, 5848, 3701, 877, 56, 116, 2212, 12096, 26988, 26988, 12096, 2212, 116, 221, 4808, 31740, 91402, 128738, 91402, 31740, 4808, 221
OFFSET
1,4
COMMENTS
Compare with Examples 1.6.7 and 1.6.9 in [Drake]. This triangle is a refinement of A027307. Compare with A175124.
LINKS
B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
FORMULA
O.g.f.: compositional inverse of x-b*x^3/(1+b*x^2)-w*x^3/(1+w*x^2) = x +(b+w)*x^3 + (2*b^2+6*b*w+2*w^2)*x^5 + ....
EXAMPLE
Triangle begins
n\k.|....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = =
..1.|....1
..2.|....1....1
..3.|....2....6....2
..4.|....5...28...28....5
..5.|...14..120..230..120...14
..6.|...27..326..985..985..326...27
..
Row 3: 2*b^2+6*b*w+2w^2. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf nodes shown as o.
..Weights....b^2.......................w^2
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....b..o..o.....o..b..o.......w..o..o.....o..w..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
..Weights....b*w..
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....w..o..o.....o..w..o.......b..o..o.....o..b..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
........b...........w..........
......./|\........./|\.........
....../.|.\......./.|.\........
.....o..o..w.....o..o..b.......
........../|\........./|\......
........./.|.\......./.|.\.....
........o..o..o.....o..o..o....
...............................
CROSSREFS
Cf. A027307 (row sums), A175124.
Sequence in context: A151853 A268766 A214775 * A342982 A128045 A011325
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Sep 29 2011
STATUS
approved