login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196201
T(n,k) counts ordered complete ternary trees with 2*n-1 leaves having k internal vertices colored black, the remaining n-1-k internal vertices colored white, and such that each vertex and its rightmost child have different colors.
2
1, 1, 1, 2, 6, 2, 5, 28, 28, 5, 14, 120, 230, 120, 14, 27, 326, 985, 985, 326, 27, 56, 877, 3701, 5848, 3701, 877, 56, 116, 2212, 12096, 26988, 26988, 12096, 2212, 116, 221, 4808, 31740, 91402, 128738, 91402, 31740, 4808, 221
OFFSET
1,4
COMMENTS
Compare with Examples 1.6.7 and 1.6.9 in [Drake]. This triangle is a refinement of A027307. Compare with A175124.
LINKS
B. Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
FORMULA
O.g.f.: compositional inverse of x-b*x^3/(1+b*x^2)-w*x^3/(1+w*x^2) = x +(b+w)*x^3 + (2*b^2+6*b*w+2*w^2)*x^5 + ....
EXAMPLE
Triangle begins
n\k.|....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = =
..1.|....1
..2.|....1....1
..3.|....2....6....2
..4.|....5...28...28....5
..5.|...14..120..230..120...14
..6.|...27..326..985..985..326...27
..
Row 3: 2*b^2+6*b*w+2w^2. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf nodes shown as o.
..Weights....b^2.......................w^2
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....b..o..o.....o..b..o.......w..o..o.....o..w..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
..Weights....b*w..
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....w..o..o.....o..w..o.......b..o..o.....o..b..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
........b...........w..........
......./|\........./|\.........
....../.|.\......./.|.\........
.....o..o..w.....o..o..b.......
........../|\........./|\......
........./.|.\......./.|.\.....
........o..o..o.....o..o..o....
...............................
CROSSREFS
Cf. A027307 (row sums), A175124.
Sequence in context: A151853 A268766 A214775 * A342982 A128045 A011325
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Bala, Sep 29 2011
STATUS
approved