login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196198
E.g.f. satisfies A(x) = exp(x/A(-x)).
5
1, 1, 3, 4, -19, -64, 1207, 5440, -164071, -954368, 39943691, 284754944, -15250391099, -128749666304, 8402599565375, 81978198409216, -6309988001033167, -69853770233675776, 6194681665486634899, 76717804389440684032
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} binomial(n,k) * (n-k)^k * (-k+1)^(n-k-1) for n>0 with a(0)=1.
E.g.f. satisfies:
_ A(x) = exp(x*exp(x/A(x))).
_ A(x) = exp(x* exp(x*exp(-x*exp(x*exp(-x*exp(x*exp(-x*...))))))).
_ A(x) = exp(x*B(x)) where B(x) = exp(x/B(x)) is the e.g.f. of A141369.
E.g.f. satisfies: x/exp(-x/A(x)) = log(A(x)). - Vaclav Kotesovec, Feb 26 2014
|a(n)| ~ c * n! / (n^(3/2) * r^n), where r = 0.5098636055230131449434409623392631606695606770070519241... is the root of the equation r*exp(1/LambertW(-I/r))/I = LambertW(-I/r), and c = 0.385745347287849929987791864025522098993432068... if n is even, and c = 0.12921599603996711137996765405025929272341118... if n is odd. - Vaclav Kotesovec, Feb 26 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 4*x^3/3! - 19*x^4/4! - 64*x^5/5! +...
where log(A(x)) = x/A(-x) begins:
x/A(-x) = x + 2*x^2/2! - 3*x^3/3! - 32*x^4/4! + 105*x^5/5! + 2016*x^6/6! - 10115*x^7/7! - 282624*x^8/8! +...+ n*A141369(n-1)*x^n/n! +...
MATHEMATICA
Flatten[{1, 1, 3, Table[Sum[Binomial[n, k]*(n-k)^k*(-k+1)^(n-k-1), {k, 0, n-1}], {n, 3, 20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n, k)*(n-k)^k*(-k+1)^(n-k-1)))}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(x/subst(A, x, -x+x*O(x^n)))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A141369.
Sequence in context: A330436 A025089 A041989 * A041561 A050214 A256605
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 30 2011
STATUS
approved