The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141369 E.g.f. satisfies A(x) = exp(x*A(-x)). 10
1, 1, -1, -8, 21, 336, -1445, -35328, 212009, 7010560, -54073449, -2258780160, 21303275389, 1076400869376, -12005345614093, -712084337721344, 9169911825026385, 624667885401341952, -9122376282532978769, -701910552416102645760, 11462725659070874233061 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
E.g.f.: A(x) = exp(x*exp(-x*exp(x*exp(-x*exp(x*...))))).
a(n+1) = Sum_{i=0..n} (i+1)*(-1)^i*binomial(n,i)*a(i)*a(n-i) - from a formula given in A096538 by Vladeta Jovovic.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (n-k+1)^(k-1) * k^(n-k). - Paul D. Hanna, Jun 13 2009
|a(n)| ~ c * n! / (n^(3/2) * r^n), where r = 0.5098636055230131449434409623392631606695606770070519241... is the root of the equation r*exp(1/LambertW(-I/r))/I = LambertW(-I/r), and c = 0.63217617290426743984700577681768332... if n is even, and c = 1.4315233793609300008688492299361204... if n is odd. - Vaclav Kotesovec, Feb 26 2014
EXAMPLE
E.g.f.: A(x) = 1 + x - x^2/2! - 8*x^3/3! + 21*x^4/4! + 336*x^5/5! --++ ...
Log(A(x)) = x - x^2 - x^3/2! + 8*x^4/3! + 21*x^4/4! - 336*x^5/5! -++- ...
MATHEMATICA
Flatten[{1, Table[Sum[(-1)^(n-k) * Binomial[n, k] * (n-k+1)^(k-1) * k^(n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
PROG
(PARI) {a(n)=local(A=1); for(i=0, n, A=exp((-1)^(n-i)*x*A+x*O(x^n))); n!*polcoeff(A, n)}
(PARI) {a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(n-k+1)^(k-1)*k^(n-k))} \\ Paul D. Hanna, Jun 13 2009
CROSSREFS
Cf. A096538.
Sequence in context: A228504 A270552 A156239 * A060390 A019281 A284737
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 28 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 10:44 EDT 2024. Contains 373396 sequences. (Running on oeis4.)