login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141369
E.g.f. satisfies A(x) = exp(x*A(-x)).
10
1, 1, -1, -8, 21, 336, -1445, -35328, 212009, 7010560, -54073449, -2258780160, 21303275389, 1076400869376, -12005345614093, -712084337721344, 9169911825026385, 624667885401341952, -9122376282532978769, -701910552416102645760, 11462725659070874233061
OFFSET
0,4
LINKS
FORMULA
E.g.f.: A(x) = exp(x*exp(-x*exp(x*exp(-x*exp(x*...))))).
a(n+1) = Sum_{i=0..n} (i+1)*(-1)^i*binomial(n,i)*a(i)*a(n-i) - from a formula given in A096538 by Vladeta Jovovic.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * (n-k+1)^(k-1) * k^(n-k). - Paul D. Hanna, Jun 13 2009
|a(n)| ~ c * n! / (n^(3/2) * r^n), where r = 0.5098636055230131449434409623392631606695606770070519241... is the root of the equation r*exp(1/LambertW(-I/r))/I = LambertW(-I/r), and c = 0.63217617290426743984700577681768332... if n is even, and c = 1.4315233793609300008688492299361204... if n is odd. - Vaclav Kotesovec, Feb 26 2014
EXAMPLE
E.g.f.: A(x) = 1 + x - x^2/2! - 8*x^3/3! + 21*x^4/4! + 336*x^5/5! --++ ...
Log(A(x)) = x - x^2 - x^3/2! + 8*x^4/3! + 21*x^4/4! - 336*x^5/5! -++- ...
MATHEMATICA
Flatten[{1, Table[Sum[(-1)^(n-k) * Binomial[n, k] * (n-k+1)^(k-1) * k^(n-k), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)
PROG
(PARI) {a(n)=local(A=1); for(i=0, n, A=exp((-1)^(n-i)*x*A+x*O(x^n))); n!*polcoeff(A, n)}
(PARI) {a(n)=sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(n-k+1)^(k-1)*k^(n-k))} \\ Paul D. Hanna, Jun 13 2009
CROSSREFS
Cf. A096538.
Sequence in context: A228504 A270552 A156239 * A060390 A019281 A284737
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 28 2008
STATUS
approved