login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141370
G.f. satisfies: A(x) = x + A(A(A(x)^2)).
3
1, 1, 2, 7, 26, 104, 436, 1894, 8444, 38418, 177656, 832548, 3945156, 18871524, 91003360, 441927367, 2159282462, 10607708284, 52363342484, 259601860898, 1292041756732, 6453179670344, 32334136480656, 162487089008766
OFFSET
1,3
FORMULA
G.f. A(x) satisfies:
(1) A( x - A(A(x^2)) ) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(A(x^2))^n / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(A(x^2))^n/x / n! ).
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 104*x^6 + 436*x^7 +...
The series reversion of A(x) = x - A(A(x^2)), where
A(A(x^2)) = x^2 + 2*x^4 + 6*x^6 + 25*x^8 + 116*x^10 + 574*x^12 + 2972*x^14 +...
The g.f. satisfies the series:
A(x) = x + A(A(x^2)) + d/dx A(A(x^2))^2/2! + d^2/dx^2 A(A(x^2))^3/3! + d^3/dx^3 A(A(x^2))^4/4! +...
as well as the logarithmic series:
log(A(x)/x) = A(A(x^2))/x + [d/dx A(A(x^2))^2/x]/2! + [d^2/dx^2 A(A(x^2))^3/x]/3! + [d^3/dx^3 A(A(x^2))^4/x]/4! +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+subst(A, x, subst(A, x, A^2+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - subst(A, x, subst(A, x, x^2+x*O(x^n))) )); polcoeff(A, n))}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, subst(A, x, subst(A, x, x^2+x*O(x^n)))^m)/m!)+x*O(x^n)); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, subst(A, x, subst(A, x, x^2+x*O(x^n)))^m/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A150545 A150546 A151296 * A150547 A150548 A150549
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2008
STATUS
approved