login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141372
G.f. satisfies: A(x) = x + A(A(A(x)))^2.
4
1, 1, 6, 57, 684, 9512, 146848, 2455208, 43764802, 822963750, 16203122280, 332189276516, 7062047285812, 155178233311932, 3515420453148936, 81936668615592785, 1961578144170589430, 48167700575393576406
OFFSET
1,3
FORMULA
G.f. A(x) satisfies:
(1) A( x - A(A(x))^2 ) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(A(x))^(2*n) / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(A(x))^(2*n)/x / n! ).
EXAMPLE
G.f.: A(x) = x + x^2 + 6*x^3 + 57*x^4 + 684*x^5 + 9512*x^6 +...
The g.f. satisfies the series:
A(x) = x + A(A(x))^2 + d/dx A(A(x))^4/2! + d^2/dx^2 A(A(x))^6/3! + d^3/dx^3 A(A(x))^8/4! +...
as well as the logarithmic series:
log(A(x)/x) = A(A(x))^2/x + [d/dx A(A(x))^4/x]/2! + [d^2/dx^2 A(A(x))^6/x]/3! + [d^3/dx^3 A(A(x))^8/x]/4! +...
Related expansions.
A(A(x)) = x + 2*x^2 + 14*x^3 + 145*x^4 + 1848*x^5 + 26920*x^6 +...
A(A(A(x))) = x + 3*x^2 + 24*x^3 + 270*x^4 + 3658*x^5 + 55970*x^6 +...
A(A(A(x)))^2 = x^2 + 6*x^3 + 57*x^4 + 684*x^5 + 9512*x^6 +...
The series reversion of A(x) = x - A(A(x))^2, where
A(A(x))^2 = x^2 + 4*x^3 + 32*x^4 + 346*x^5 + 4472*x^6 + 65292*x^7 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+subst(A^2, x, subst(A, x, A+x*O(x^n)))); polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, subst(A, x, A+x*O(x^n))^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, subst(A, x, A+x*O(x^n))^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A324447 A060435 A153851 * A306030 A152170 A087659
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2008
STATUS
approved