login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A151296
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 1), (-1, 0), (0, 1), (1, -1), (1, 0)}.
0
1, 2, 7, 26, 104, 436, 1878, 8285, 37144, 168793, 775209, 3591445, 16760364, 78696089, 371450137, 1761190032, 8383369989, 40042977165, 191846857887, 921629216986, 4438189698963, 21418876479779, 103570607307949, 501701667445534, 2434187911313517, 11827723470989792, 57548359992678038, 280350852928397935
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A345884 A150545 A150546 * A141370 A150547 A150548
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved