login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151297
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, -1), (0, 1), (1, -1), (1, 0)}.
0
1, 2, 7, 26, 105, 444, 1944, 8728, 39999, 186266, 879108, 4195762, 20217136, 98220992, 480623748, 2366735352, 11720044199, 58329063714, 291607308864, 1463803013168, 7375252291592, 37285645521840, 189084169866584, 961635234827346, 4903573489214352, 25065602340246704, 128419743299166764
OFFSET
0,2
LINKS
A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.
A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
G.f.: (1/128)*(1-62*x)/x^2+(2*x+1)/x^2*(-1/128+Int(x/((2*x+1)*(1-6*x))^(3/2)*(-3-1/2*Int(((1-6*x)/(2*x+1)/(1-8*x^2)^3)^(1/2)*((24*x^3+4*x^2+4*x+1)/x^2*hypergeom( [1/4,3/4],[1],64/(8*x^2-1)^2*(2*x+1)*x^3)+12*x*(8*x^2+4*x+1)*(1+14*x+16*x^2)/(1-8*x^2)^2*hypergeom([5/4, 7/4],[2],64/(8*x^2-1)^2*(2*x+1)*x^3)),x)),x)). [Mark van Hoeij, Oct 13 2009]
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A150553 A150554 A150555 * A052706 A150556 A150557
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved