login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052706
A simple context-free grammar.
4
0, 0, 1, 2, 7, 26, 105, 444, 1944, 8734, 40040, 186550, 880750, 4204508, 20260498, 98419392, 481442805, 2369551218, 11725590555, 58303117680, 291151523355, 1459590130350, 7342906908645, 37058911816680, 187579329483780, 952006706210196, 4843566974043900
OFFSET
0,4
LINKS
Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
FORMULA
G.f.: RootOf(-_Z+_Z^2+_Z^3+x)^2
Recurrence: {a(1) = 0, a(2) = 1, a(3) = 2, (6-27*n+27*n^2)*a(n)+(6+65*n+49*n^2)*a(n+1)+(67*n+66+17*n^2)*a(n+2)+(-5*n^2-25*n-30)*a(n+3)}
a(n) = 2*(Sum_{k=0..n-2} binomial(k,n-k-2)*binomial(n+k-1,n-1))/n, n>1, a(0)=a(1)=0. - Vladimir Kruchinin, May 19 2012
a(n) ~ 3^(3*n-5/2)/(sqrt(2*Pi)*5^(n-1/2)*n^(3/2)). - Vaclav Kotesovec, Oct 09 2012
MAPLE
spec := [S, {C = Union(S, B, Z), B = Prod(S, C), S = Prod(C, C)}, unlabeled]: seq(combstruct[count](spec, size = n), n = 0..20);
MATHEMATICA
Flatten[{0, 0, Table[2*Sum[Binomial[k, n-k-2]*Binomial[n+k-1, n-1], {k, 0, n-2}]/n, {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 09 2012 *)
PROG
(Maxima) a(n):=if n<2 then 0 else (2*sum(binomial(k, n-k-2)*binomial(n+k-1, n-1), k, 0, n-2))/n; // Vladimir Kruchinin, May 19 2012
(PARI) a(n) = if(n>1, 2*sum(k=0, n-2, binomial(k, n-k-2)*binomial(n+k-1, n-1))/n, 0) \\ Jason Yuen, Aug 12 2024
CROSSREFS
Sequence in context: A150554 A150555 A151297 * A150556 A150557 A150558
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved