login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052704
Apart from the leading term, a(n) = Catalan(n-1)*4^(n-1).
4
0, 1, 4, 32, 320, 3584, 43008, 540672, 7028736, 93716480, 1274544128, 17611882496, 246566354944, 3489862254592, 49855175065600, 717914520944640, 10409760553697280, 151860036312760320, 2227280532587151360, 32823081532863283200, 485781606686376591360, 7217326727911880785920
OFFSET
0,3
COMMENTS
Series reversion of g.f. A(x) is x-4*x^2. Or x = A(x) - 4*A(x)^2.
From David Callan, Sep 20 2007: (Start)
4^n Catalan[n] counts NESW walks of 2n steps from the origin that stay weakly below the line y=x and end on it. A NESW walk consists of unit steps North, East, South, or West (may cross itself or backtrack). For example, n=1: SN, SW, EN, EW.
Bijective proof: given such a NESW walk, construct a pair (P_1, P_2) of lattice paths of upsteps U=(1,1) and downsteps D=(1,-1) as follows. To get P_1, replace each E and S by U and each W and N by D. To get P_2, replace each N and E by U and each S and W by D. For example, SENSNW -> (UUDUDD, DUUDUD).
This mapping is 1-to-1 and its range is the Cartesian product of the set of Dyck n-paths (counted by the Catalan number C_n) and the set of arbitrary paths of length 2n (counted by 4^n). The number of the above NESW walks with j South and k West steps is binomial(n,j)*binomial(n,k)CatalanNumber(n).
The Bousquet-Mélou and Schaeffer references show that 4^n Catalan(n) counts NESW walks of 2n+1 steps from the origin that never return to the nonpositive x-axis (y=0, x<=0) and end at (0,1). n=1: NNS, NEW, NWE, ENW. (End)
LINKS
M. Bousquet-Mélou, Walks on the slit plane: other approaches, Advances in Applied Math. 27 (2001), 243-288.
M. Bousquet-Mélou and G. Schaeffer, Walks on the Slit Plane, arXiv:math/0012230 [math.CO], 2000.
M. Bousquet-Mélou and G. Schaeffer, Walks on the slit plane, Probab. Theory Related Fields 124 (2002), 305-344.
FORMULA
a(n) = 16^n*Gamma(n+1/2)/Gamma(n+2)/Pi^(1/2).
G.f.: (1 - sqrt(1 - 16*x)) / 8.
D-finite with recurrence a(n) = 8*(2-3/n)*a(n-1), n>1.
a(0)=0, a(1)=1, a(n) = 4*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n+1) = (1/(8*Pi))*Integral_{x=0..16} x^n*sqrt(x*(16-x))/x dx; a(n+1) = (1/(8*Pi))*Integral_{x=-4..4} x^(2*n)*sqrt(4-x)*sqrt(4+x)*dt. - Paul Barry, Oct 01 2007
a(n) = upper left term of M^(n-1), where M is an infinite matrix as follows:
4, 4, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
4, 4, 4, 4, 0, 0, ...
4, 4, 4, 4, 4, 0, ...
4, 4, 4, 4, 4, 4, ...
...
- Gary W. Adamson, Jul 13 2011
a(n) = 4 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
a(n) ~ 16^(n-1)/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Dec 04 2016
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 88/75 + 128*arctan(1/sqrt(15)) / (75*sqrt(15)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 248/289 - 384*arctanh(1/sqrt(17)) / (289*sqrt(17)). (End)
EXAMPLE
x + 4*x^2 + 32*x^3 + 320*x^4 + 3584*x^5 + 43008*x^6 + 540672*x^7 + ...
MAPLE
spec := [S, {B=Prod(C, C), S=Union(B, Z), C=Union(S, B, Z)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
InverseSeries[Series[y-4*y^2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *)
Join[{0}, Table[CatalanNumber[n-1]4^(n-1), {n, 20}]] (* Harvey P. Dale, Dec 01 2013 *)
PROG
(PARI) {a(n) = if( n<1, 0, n--; 4^n * (2 * n)! / n! / (n + 1)!)}
(PARI) {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = 4 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
CROSSREFS
See A000108 for Catalan numbers.
Sequence in context: A047734 A220118 A060174 * A151403 A289427 A090004
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved