login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052705 Expansion of 2*x^2/(1 - 2*x - 2*x^2 + sqrt(1 - 4*x - 4*x^2)). 7
0, 0, 1, 2, 7, 24, 89, 342, 1355, 5492, 22669, 94962, 402703, 1725424, 7458065, 32482798, 142414867, 628037612, 2783922197, 12397342698, 55436525591, 248819728360, 1120584933401, 5062273384422, 22933667676187 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Number of underdiagonal paths from (0,0) to the line x=n-2, using only steps R=(1,0), V=(0,1) and D=(2,1). E.g., a(4)=7 because we have RR, RRV, RVR, D, RVRV, RRVV and DV. - Emeric Deutsch, Dec 21 2003

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 660

C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.

D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Can. J. Math., 49 (2) (1997) 301-310.

FORMULA

D-finite with recurrence: a(1)=0, a(2)=1, a(3)=2, 4*(n+1)*a(n) + (10+8*n)*a(n+1) + (2+3*n)*a(n+2) + (-n-3)*a(n+3) = 0.

a(n+2) = Sum_{k=0..n} Sum_{j=0..n} C(j,n-j)*A001263(j,k). - Paul Barry, Jun 30 2009

a(n) = Sum_{j=1..floor(n/2)} C(2*n-2*j,n)*C(n,j-1)/(n-j). - Vladimir Kruchinin, Jan 16 2015

G.f.: A(x) satisfies A(x) = C(x*(1+A(x)))^2, where x*C(x) is g.f. of Catalan numbers. - Vladimir Kruchinin, Jan 16 2015

a(n) = C(2*n-2,n)*3F2((2-n)/2,(3-n)/2,-n;3/2-n,2-n;-1)/(n-1), n>1. - Benedict W. J. Irwin, Sep 13 2016

a(n) ~ 2^(n + 3/4) * (1 + sqrt(2))^(n - 5/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019

MAPLE

spec := [S, {S=Prod(B, B), C=Prod(S, Z), B=Union(S, C, Z)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

CoefficientList[Series[(2x^2)/(1-2x-2x^2+Sqrt[1-4x-4x^2]), {x, 0, 30}], x] (* Harvey P. Dale, Dec 16 2014 *)

Join[{0, 0}, Table[(Binomial[2(m-1), m]HypergeometricPFQ[{(2-m)/2, (3-m)/2, -m}, {3/2-m, 2-m}, -1])/(m-1), {m, 2, 20}]] (* Benedict W. J. Irwin, Sep 13 2016 *)

PROG

(Maxima)

a(n):=(sum(binomial(2*n-2*j, n)*binomial(n, j-1)/(n-j), j, 1, n/2)); /* Vladimir Kruchinin, Jan 16 2015 */

CROSSREFS

Row sums of A071945, cf. A000108.

Sequence in context: A151293 A122446 A150390 * A150391 A150392 A150393

Adjacent sequences:  A052702 A052703 A052704 * A052706 A052707 A052708

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from Emeric Deutsch, Mar 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 13:16 EDT 2021. Contains 348048 sequences. (Running on oeis4.)