login
A151300
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (1, -1), (1, 0), (1, 1)}.
0
1, 2, 8, 28, 118, 469, 2039, 8559, 37909, 164062, 735698, 3246436, 14688132, 65690534, 299227510, 1351439955, 6188946223, 28161550486, 129528141204, 592866204918, 2736746791312, 12585998174974, 58276845530802, 269058921980442, 1249107763866352, 5785962784369466, 26923056650212598, 125058263384130622
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A150718 A344558 A217720 * A150719 A150720 A150721
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved