login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A151299
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, -1), (0, 1), (1, 1)}.
0
1, 2, 8, 28, 116, 465, 1980, 8393, 36495, 159224, 703466, 3122910, 13965291, 62727001, 283127006, 1282634921, 5831588809, 26593352814, 121612750646, 557511728992, 2561633569528, 11794202901847, 54405218589731, 251397920522538, 1163526932180757, 5393008739923600, 25031149678866730, 116327793681728800
OFFSET
0,2
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A356933 A026528 A150716 * A150717 A150718 A344558
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved