login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356933
Number of multisets of multisets, each of odd size, whose multiset union is a size-n multiset covering an initial interval.
6
1, 1, 2, 8, 28, 108, 524, 2608, 14176, 86576, 550672, 3782496, 27843880, 214071392, 1751823600, 15041687664, 134843207240, 1269731540864, 12427331494304, 126619822952928, 1341762163389920, 14712726577081248, 167209881188545344, 1963715680476759040, 23794190474350155856
OFFSET
0,3
EXAMPLE
The a(4) = 28 multiset partitions:
{1}{111} {1}{112} {1}{123} {1}{234}
{1}{1}{1}{1} {1}{122} {1}{223} {2}{134}
{1}{222} {1}{233} {3}{124}
{2}{111} {2}{113} {4}{123}
{2}{112} {2}{123} {1}{2}{3}{4}
{2}{122} {2}{133}
{1}{1}{1}{2} {3}{112}
{1}{1}{2}{2} {3}{122}
{1}{2}{2}{2} {3}{123}
{1}{1}{2}{3}
{1}{2}{2}{3}
{1}{2}{3}{3}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@mps/@allnorm[n], OddQ[Times@@Length/@#]&]], {n, 0, 5}]
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k) = {EulerT(vector(n, j, if(j%2 == 1, binomial(j+k-1, j))))}
seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Jan 01 2023
CROSSREFS
A000041 counts integer partitions, strict A000009.
A000670 counts patterns, ranked by A333217, necklace A019536.
A011782 counts multisets covering an initial interval.
Odd-size multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other conditions: A034691, A116540, A255906, A356937, A356942.
Other types: A050330, A356932, A356934, A356935.
Sequence in context: A292668 A122447 A150715 * A026528 A150716 A151299
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 08 2022
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 01 2023
STATUS
approved