login
A356931
Number of multiset partitions of the prime indices of n into multisets of odd numbers. Number of factorizations of n into members of A066208.
3
1, 1, 0, 2, 1, 0, 0, 3, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 4, 0, 2, 1, 0, 2, 0, 0, 0, 0, 0, 1, 7, 0, 2, 0, 0, 0, 0, 0, 7, 1, 0, 0, 4, 0, 2, 1, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 11, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 12, 0, 2, 1, 0, 2, 0
OFFSET
1,4
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
a(n) = 0 if n is in A324929, otherwise a(n) = A001055(n).
EXAMPLE
The a(440) = 21 multiset partitions of {1,1,1,3,5}:
{1}{1}{1}{3}{5} {1}{1}{1}{35} {1}{1}{135} {1}{1135} {11135}
{1}{1}{13}{5} {1}{11}{35} {11}{135}
{1}{11}{3}{5} {11}{13}{5} {111}{35}
{1}{1}{3}{15} {1}{13}{15} {113}{15}
{11}{3}{15} {13}{115}
{1}{3}{115} {3}{1115}
{1}{5}{113} {5}{1113}
{3}{111}{5}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], And@@(OddQ[Times@@primeMS[#]]&/@#)&]], {n, 100}]
CROSSREFS
Positions of 0's are A324929, complement A066208.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Other conditions: A050320, A050330, A356936, A322585, A356233, A356945.
Sequence in context: A364022 A363900 A209777 * A377129 A356864 A145677
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 08 2022
STATUS
approved