The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050320 Number of ways n is a product of squarefree numbers > 1. 40
 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 5, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1). Broughan shows (Theorem 8) that the average value of a(n) is k exp(2*sqrt(log n)/sqrt(zeta(2)))/log(n)^(3/4) where k is about 0.18504.  - Charles R Greathouse IV, May 21 2013 From Gus Wiseman, Aug 20 2020: (Start) Also the number of set multipartitions (multisets of sets) of the multiset of prime indices of n. For example, the a(n) set multipartitions for n = 2, 6, 36, 60, 360 are:   {1}  {12}    {12}{12}      {1}{123}      {1}{12}{123}        {1}{2}  {1}{2}{12}    {12}{13}      {12}{12}{13}                {1}{1}{2}{2}  {1}{1}{23}    {1}{1}{12}{23}                              {1}{2}{13}    {1}{1}{2}{123}                              {1}{3}{12}    {1}{2}{12}{13}                              {1}{1}{2}{3}  {1}{3}{12}{12}                                            {1}{1}{1}{2}{23}                                            {1}{1}{2}{2}{13}                                            {1}{1}{2}{3}{12}                                            {1}{1}{1}{2}{2}{3} (End) LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 Kevin Broughan, Quadrafree factorisatio numerorum, Rocky Mountain J. Math. 44 (3) (2014) 791-807. FORMULA Dirichlet g.f.: Product_{n is squarefree and > 1} (1/(1-1/n^s)). a(n) = A050325(A101296(n)). - R. J. Mathar, May 26 2017 a(n!) = A103774(n); a(A006939(n)) = A337072(n). - Gus Wiseman, Aug 20 2020 EXAMPLE For n = 36 we have three choices as 36 = 2*2*3*3 = 6*6 = 2*3*6 (but no factorizations with factors 4, 9, 12, 18 or 36 are allowed), thus a(36) = 3. - Antti Karttunen, Oct 21 2017 MATHEMATICA sub[w_, e_] := Block[{v = w}, v[[e]]--; v]; ric[w_, k_] := If[Max[w] == 0, 1, Block[{e, s, p = Flatten@Position[Sign@w, 1]}, s = Select[Prepend[#, First@p] & /@ Subsets[Rest@p], Total[1/2^#] <= k &]; Sum[ric[sub[w, e], Total[1/2^e]], {e, s}]]]; sig[w_] := sig[w] = ric[w, 1];  a[n_] := sig@ Sort[Last /@ FactorInteger[n]]; Array[a, 103] (* Giovanni Resta, May 21 2013 *) sqfacs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#, d]&)/@Select[sqfacs[n/d], Min@@#>=d&], {d, Select[Rest[Divisors[n]], SquareFreeQ]}]] Table[Length[sqfacs[n]], {n, 100}] (* Gus Wiseman, Aug 20 2020 *) PROG (Haskell) a050320 n = h n \$ tail \$ a206778_row n where    h 1 _          = 1    h _ []         = 0    h m fs'@(f:fs) =      if f > m then 0 else if r > 0 then h m fs else h m' fs' + h m fs      where (m', r) = divMod m f -- Reinhard Zumkeller, Dec 16 2013 CROSSREFS Cf. A001055, A005117, A050325. a(p^k)=1. a(A002110)=A000110. a(n!)=A103774(n). Cf. A206778. Differs from A259936 for the first time at n=36. A050326 is the strict case. A045778 counts strict factorizations. A089259 counts set multipartitions of integer partitions. A116540 counts normal set multipartitions. Cf. A008480, A124010, A317829, A318360. Sequence in context: A323437 A339887 A259936 * A333175 A294893 A336570 Adjacent sequences:  A050317 A050318 A050319 * A050321 A050322 A050323 KEYWORD nonn,easy,nice AUTHOR Christian G. Bower, Sep 15 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 16:17 EDT 2021. Contains 347658 sequences. (Running on oeis4.)