login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103774
Number of ways to write n! as product of squarefree numbers.
4
1, 1, 2, 2, 6, 10, 42, 42, 82, 204, 1196, 1556, 10324, 34668, 104948, 104964, 873540, 1309396, 11855027, 25238220, 91193575, 453628255, 5002616219, 5902762219, 21142729523, 122981607092, 189706055368, 547296181656, 7291700021313, 14330422534833, 202498591157970
OFFSET
1,3
COMMENTS
a(n) = A050320(A000142(n)).
From Gus Wiseman, Aug 20 2020: (Start)
Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of n!. For example, The a(2) = 1 through a(6) = 10 set multipartitions are:
{1} {12} {1}{1}{12} {1}{1}{123} {1}{1}{12}{123}
{1}{2} {1}{1}{1}{2} {1}{12}{13} {1}{12}{12}{13}
{1}{1}{1}{23} {1}{1}{1}{12}{23}
{1}{1}{2}{13} {1}{1}{1}{2}{123}
{1}{1}{3}{12} {1}{1}{2}{12}{13}
{1}{1}{1}{2}{3} {1}{1}{3}{12}{12}
{1}{1}{1}{1}{2}{23}
{1}{1}{1}{2}{2}{13}
{1}{1}{1}{2}{3}{12}
{1}{1}{1}{1}{2}{2}{3}
(End)
EXAMPLE
n=5, 5! = 1*2*3*4*5 = 120 = 2 * 2 * 2 * 3 * 5: a(5)=#{2*2*2*3*5,2*2*2*15,2*2*6*5,2*2*30,2*2*3*10,2*6*10}=6.
MATHEMATICA
sub[w_, e_] := Block[{v=w}, v[[e]]--; v]; ric[w_, k_] := ric[w, k] = If[Max[w] == 0, 1, Block[{e, s, p = Flatten@ Position[Sign@w, 1]}, s = Select[ Prepend[#, First@p] & /@ Subsets[Rest@p], Total[1/2^#] <= k &]; Sum[ric[sub[w, e], Total[1/2^e]], {e, s}]]]; a[n_] := ric[ Sort[ Last /@ FactorInteger[n!]], 1]; Array[a, 22] (* Giovanni Resta, Sep 30 2019 *)
CROSSREFS
A103775 is the strict case.
A157612 is the case of superprimorials.
A001055 counts factorizations.
A045778 counts strict factorizations.
A048656 counts squarefree divisors of factorials.
A050320 counts factorizations into squarefree numbers.
A050326 counts strict factorizations into squarefree numbers.
A076716 counts factorizations of factorials.
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A157612 counts strict factorizations of factorials.
Sequence in context: A076907 A260785 A153897 * A036052 A355207 A308260
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 15 2005
EXTENSIONS
a(17)-a(18) from Amiram Eldar, Sep 30 2019
a(19)-a(31) from Giovanni Resta, Sep 30 2019
STATUS
approved