login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027423
Number of divisors of n!.
120
1, 1, 2, 4, 8, 16, 30, 60, 96, 160, 270, 540, 792, 1584, 2592, 4032, 5376, 10752, 14688, 29376, 41040, 60800, 96000, 192000, 242880, 340032, 532224, 677376, 917280, 1834560, 2332800, 4665600, 5529600, 7864320, 12165120, 16422912
OFFSET
0,3
COMMENTS
It appears that a(n+1)=2*a(n) if n is in A068499. - Benoit Cloitre, Sep 07 2002
Because a(0) = 1 and for all n > 0, 2*a(n) >= a(n+1), the sequence is a complete sequence. - Frank M Jackson, Aug 09 2013
Luca and Young prove that a(n) divides n! for n >= 6. - Michel Marcus, Nov 02 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
Daniel Berend and J. E. Harmse, Gaps between consecutive divisors of factorials, Ann. Inst. Fourier, 43 (3) (1993), 569-583.
Paul Erdős, S. W. Graham, Alexsandr Ivić, and Carl Pomerance, On the number of divisors of n!, Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, ed. by B. C. Berndt, H. G. Diamond, A. J. Hildebrand, Birkhauser 1996, pp. 337-355.
Florian Luca and Paul Thomas Young, On the number of divisors of n! and of the Fibonacci numbers, Glasnik Matematicki, Vol. 47, No. 2 (2012), 285-293. DOI: 10.3336/gm.47.2.05.
John D. Mahony, The next number in the sequence, Math. Gaz. (2024) Vol. 108, Issue 573, 399-406.
Wikipedia, Complete sequence.
FORMULA
a(n) <= a(n+1) <= 2*a(n) - Benoit Cloitre, Sep 07 2002
From Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 28 2009: (Start)
Assume, p1,p2...pm are the prime numbers less than or equal to n.
Then, a(n) = Product_{i=1..m} (bi+1), where bk = Sum_{i=1..m} floor(n/pk^i).
For example, if n=5, p1=2,p2=3,p3=5;
b1=floor(5/2)+floor(5/2^2)+floor(5/2^3)+...=2+1+0+..=3 similarly, b2=b3=1;
Thus a(5)=(3+1)(1+1)(1+1)=16. (End)
a(n) = A000005(A000142(n)). - Michel Marcus, Sep 13 2014
a(n) ~ exp(c * n/log(n) + O(n/log(n)^2)), where c = A131688 (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020
EXAMPLE
a(4) = 8 because 4!=24 has precisely eight distinct divisors: 1, 2, 3, 4, 6, 8, 12, 24.
MAPLE
A027423 := n -> numtheory[tau](n!);
MATHEMATICA
Table[ DivisorSigma[0, n! ], {n, 0, 35}]
PROG
(PARI) for(k=0, 50, print1(numdiv(k!), ", ")) \\ Jaume Oliver Lafont, Mar 09 2009
(PARI) a(n)=my(s=1, t, tt); forprime(p=2, n, t=tt=n\p; while(tt, t+=tt\=p); s*=t+1); s \\ Charles R Greathouse IV, Feb 08 2013
(Haskell)
a027423 n = f 1 $ map (\p -> iterate (* p) p) a000040_list where
f y ((pps@(p:_)):ppss)
| p <= n = f (y * (sum (map (div n) $ takeWhile (<= n) pps) + 1)) ppss
| otherwise = y
-- Reinhard Zumkeller, Feb 27 2013
(Python 3.8+)
from math import prod
from collections import Counter
from sympy import factorint
def A027423(n): return prod(e+1 for e in sum((Counter(factorint(i)) for i in range(2, n+1)), start=Counter()).values()) # Chai Wah Wu, Jun 25 2022
CROSSREFS
Cf. A000005, A000142, A062569, A131688, A161466 (divisors of 10!).
Sequence in context: A164203 A164178 A335542 * A140410 A213368 A216212
KEYWORD
nonn,easy,nice
AUTHOR
Glen Burch (gburch(AT)erols.com), Leroy Quet.
STATUS
approved