login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors of n!.
120

%I #77 Nov 18 2024 12:04:37

%S 1,1,2,4,8,16,30,60,96,160,270,540,792,1584,2592,4032,5376,10752,

%T 14688,29376,41040,60800,96000,192000,242880,340032,532224,677376,

%U 917280,1834560,2332800,4665600,5529600,7864320,12165120,16422912

%N Number of divisors of n!.

%C It appears that a(n+1)=2*a(n) if n is in A068499. - _Benoit Cloitre_, Sep 07 2002

%C Because a(0) = 1 and for all n > 0, 2*a(n) >= a(n+1), the sequence is a complete sequence. - _Frank M Jackson_, Aug 09 2013

%C Luca and Young prove that a(n) divides n! for n >= 6. - _Michel Marcus_, Nov 02 2017

%H Seiichi Manyama, <a href="/A027423/b027423.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)

%H Daniel Berend and J. E. Harmse, <a href="http://dx.doi.org/10.5802/aif.1348">Gaps between consecutive divisors of factorials</a>, Ann. Inst. Fourier, 43 (3) (1993), 569-583.

%H Paul Erdős, S. W. Graham, Alexsandr Ivić, and Carl Pomerance, <a href="http://people.cst.cmich.edu/graha1sw/Pub/Papers/divfactorial.pdf">On the number of divisors of n!</a>, Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, ed. by B. C. Berndt, H. G. Diamond, A. J. Hildebrand, Birkhauser 1996, pp. 337-355.

%H Florian Luca and Paul Thomas Young, <a href="https://web.math.pmf.unizg.hr/glasnik/vol_47/no2_05.html">On the number of divisors of n! and of the Fibonacci numbers</a>, Glasnik Matematicki, Vol. 47, No. 2 (2012), 285-293. DOI: 10.3336/gm.47.2.05.

%H John D. Mahony, <a href="https://doi.org/10.1017/mag.2024.108">The next number in the sequence</a>, Math. Gaz. (2024) Vol. 108, Issue 573, 399-406.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Complete_sequence">Complete sequence</a>.

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>

%F a(n) <= a(n+1) <= 2*a(n) - _Benoit Cloitre_, Sep 07 2002

%F From Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 28 2009: (Start)

%F Assume, p1,p2...pm are the prime numbers less than or equal to n.

%F Then, a(n) = Product_{i=1..m} (bi+1), where bk = Sum_{i=1..m} floor(n/pk^i).

%F For example, if n=5, p1=2,p2=3,p3=5;

%F b1=floor(5/2)+floor(5/2^2)+floor(5/2^3)+...=2+1+0+..=3 similarly, b2=b3=1;

%F Thus a(5)=(3+1)(1+1)(1+1)=16. (End)

%F a(n) = A000005(A000142(n)). - _Michel Marcus_, Sep 13 2014

%F a(n) ~ exp(c * n/log(n) + O(n/log(n)^2)), where c = A131688 (Erdős et al., 1996). - _Amiram Eldar_, Nov 07 2020

%e a(4) = 8 because 4!=24 has precisely eight distinct divisors: 1, 2, 3, 4, 6, 8, 12, 24.

%p A027423 := n -> numtheory[tau](n!);

%t Table[ DivisorSigma[0, n! ], {n, 0, 35}]

%o (PARI) for(k=0,50,print1(numdiv(k!),", ")) \\ _Jaume Oliver Lafont_, Mar 09 2009

%o (PARI) a(n)=my(s=1,t,tt);forprime(p=2,n,t=tt=n\p; while(tt, t+=tt\=p); s*=t+1); s \\ _Charles R Greathouse IV_, Feb 08 2013

%o (Haskell)

%o a027423 n = f 1 $ map (\p -> iterate (* p) p) a000040_list where

%o f y ((pps@(p:_)):ppss)

%o | p <= n = f (y * (sum (map (div n) $ takeWhile (<= n) pps) + 1)) ppss

%o | otherwise = y

%o -- _Reinhard Zumkeller_, Feb 27 2013

%o (Python 3.8+)

%o from math import prod

%o from collections import Counter

%o from sympy import factorint

%o def A027423(n): return prod(e+1 for e in sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # _Chai Wah Wu_, Jun 25 2022

%Y Cf. A000005, A000142, A062569, A131688, A161466 (divisors of 10!).

%K nonn,easy,nice

%O 0,3

%A Glen Burch (gburch(AT)erols.com), _Leroy Quet_.