The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216212 Number of n step walks (each step +-1 starting from 0) which are never more than 4 or less than -4. 6
 1, 2, 4, 8, 16, 30, 60, 110, 220, 400, 800, 1450, 2900, 5250, 10500, 19000, 38000, 68750, 137500, 248750, 497500, 900000, 1800000, 3256250, 6512500, 11781250, 23562500, 42625000, 85250000, 154218750, 308437500, 557968750, 1115937500, 2018750000, 4037500000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The number of n step walks (each step +-1 starting from 0) which are never more than k or less than -k is given by a(n,k) = 2^n/(k+1)*Sum_{r=1..k+1} (-1)^r*cos((Pi*(2*r-1))/(2*(k+1)))^n*cot((Pi*(1-2*r))/(4*(k+1))), n<>0 if k even. Here we have k=4. - Herbert Kociemba, Sep 22 2020 LINKS Table of n, a(n) for n=0..34. Index entries for linear recurrences with constant coefficients, signature (0,5,0,-5). FORMULA a(n) = A068913(4,n). G.f.: (1+2*x-x^2-2*x^3+x^4)/(1-5*x^2+5*x^4). a(n) = 5*a(n-2) - 5*a(n-4), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16. a(2*n+1) = 2*A039717(n+1), a(2*n+2) = 4*A039717(n+1). a(n) = (2^n/5)*Sum_{r=1..5} (-1)^r*cos(Pi*(2*r-1)/10)^n*cot(Pi*(1-2*r)/20), n>0. - Herbert Kociemba, Sep 22 2020 MATHEMATICA nn=30; CoefficientList[Series[(1+x-x^2)^2/(1-5x^2+5x^4), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 14 2014 *) a[0, 4]=1; a[n_, k_]:=2^n/(k+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (k+1))]^n Cot[(Pi (1-2r))/(4 (k+1))], {r, 1, k+1}] Table[a[n, 4], {n, 0, 40}]//Round (* Herbert Kociemba, Sep 22 2020 *) CROSSREFS Cf. A068911, A068912, A068913, A178381 (starting from 4). Sequence in context: A027423 A140410 A213368 * A164263 A283836 A244825 Adjacent sequences: A216209 A216210 A216211 * A216213 A216214 A216215 KEYWORD nonn,walk AUTHOR Philippe Deléham, Mar 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 15:49 EDT 2024. Contains 372778 sequences. (Running on oeis4.)