The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216212 Number of n step walks (each step +-1 starting from 0) which are never more than 4 or less than -4. 6
1, 2, 4, 8, 16, 30, 60, 110, 220, 400, 800, 1450, 2900, 5250, 10500, 19000, 38000, 68750, 137500, 248750, 497500, 900000, 1800000, 3256250, 6512500, 11781250, 23562500, 42625000, 85250000, 154218750, 308437500, 557968750, 1115937500, 2018750000, 4037500000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The number of n step walks (each step +-1 starting from 0) which are never more than k or less than -k is given by a(n,k) = 2^n/(k+1)*Sum_{r=1..k+1} (-1)^r*cos((Pi*(2*r-1))/(2*(k+1)))^n*cot((Pi*(1-2*r))/(4*(k+1))), n<>0 if k even. Here we have k=4. - Herbert Kociemba, Sep 22 2020
LINKS
FORMULA
a(n) = A068913(4,n).
G.f.: (1+2*x-x^2-2*x^3+x^4)/(1-5*x^2+5*x^4).
a(n) = 5*a(n-2) - 5*a(n-4), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16.
a(2*n+1) = 2*A039717(n+1), a(2*n+2) = 4*A039717(n+1).
a(n) = (2^n/5)*Sum_{r=1..5} (-1)^r*cos(Pi*(2*r-1)/10)^n*cot(Pi*(1-2*r)/20), n>0. - Herbert Kociemba, Sep 22 2020
MATHEMATICA
nn=30; CoefficientList[Series[(1+x-x^2)^2/(1-5x^2+5x^4), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 14 2014 *)
a[0, 4]=1; a[n_, k_]:=2^n/(k+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (k+1))]^n Cot[(Pi (1-2r))/(4 (k+1))], {r, 1, k+1}]
Table[a[n, 4], {n, 0, 40}]//Round (* Herbert Kociemba, Sep 22 2020 *)
CROSSREFS
Cf. A068911, A068912, A068913, A178381 (starting from 4).
Sequence in context: A027423 A140410 A213368 * A164263 A283836 A244825
KEYWORD
nonn,walk
AUTHOR
Philippe Deléham, Mar 13 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 15:49 EDT 2024. Contains 372778 sequences. (Running on oeis4.)