login
A216209
Triangle read by rows: T(n,k) = n+k with 0 <= k <= 2*n.
0
0, 1, 2, 3, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
OFFSET
0,3
COMMENTS
The left half together with the central column is the A051162 triangle.
Row sums of the reciprocals of the terms in the above triangle converge to log(3). See link to Eric Naslund's answer. [Mats Granvik, Apr 07 2013]
The first time that the numbers of the triplet 3k+1, 3k+2, 3k+3 appear in the sequence is for a(k^2+4*k+1) = 3*k+1, a(k^2+4*k+2) = 3*k+2, a(k^2+4*k+3) = 3*k+3 for k >= 0. - Bernard Schott, Jun 09 2019
FORMULA
a(n) = floor(sqrt(n)) - floor(sqrt(n))^2 + n. - Ridouane Oudra, Jun 08 2019
EXAMPLE
Triangle begins:
0
1 2 3
2 3 4 5 6
3 4 5 6 7 8 9
4 5 6 7 8 9 10 11 12
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16 17 18
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
MAPLE
seq(seq(n+k, k=0..2*n), n=0..12); # Ridouane Oudra, Jun 08 2019
CROSSREFS
Sequence in context: A261323 A134986 A336860 * A289172 A215653 A358503
KEYWORD
nonn,tabf,easy
AUTHOR
Alex Ratushnyak, Mar 12 2013
STATUS
approved