login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216206
a(n) = product_{i=1..n} ((-2)^i-1).
2
1, -3, -9, 81, 1215, -40095, -2525985, 325852065, 83092276575, -42626337882975, -43606743654283425, 89350217747626737825, 365889141676531491393375, -2997729737755822508985921375, -49111806293653640164716349886625, 1609344780436736134557590069434814625
OFFSET
0,2
COMMENTS
Signed partial products of A062510. This implies that all terms from a(1) on are multiples of 3.
FORMULA
A015109(n,k) = a(n)/(a(k)*a(n-k)).
a(n) = (-3)^n*A015013(n) for n>0, a(0)=1. [Bruno Berselli and Alonso del Arte, Mar 13 2013]
MAPLE
A216206 := proc(n)
mul( (-2)^i-1, i=1..n) ;
end proc:
MATHEMATICA
Table[(-1)^n QPochhammer[-2, -2, n], {n, 0, 15}] (* Bruno Berselli, Mar 13 2013 *)
Table[Product[(-2)^k-1, {k, n}], {n, 0, 20}] (* Harvey P. Dale, Oct 21 2024 *)
CROSSREFS
Sequence in context: A121858 A215114 A032108 * A038062 A218149 A011764
KEYWORD
sign,easy
AUTHOR
R. J. Mathar, Mar 12 2013
STATUS
approved