login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011764
a(n) = 3^(2^n) (or: write in base 3, read in base 9).
25
3, 9, 81, 6561, 43046721, 1853020188851841, 3433683820292512484657849089281, 11790184577738583171520872861412518665678211592275841109096961
OFFSET
0,1
COMMENTS
a(n) is the second-highest value k such that A173419(k) = n+2. - Charles R Greathouse IV, Oct 03 2012
Let b(0) = 6; b(n+1) = smallest number such that b(n+1) + Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+1) = a(n) for n >= 0. - Derek Orr, Dec 13 2014
Changing "+" to "-": Let b(0) = 6; b(n+1) = smallest number such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+2) = a(n) for n >= 0. - Derek Orr, Jan 04 2015
With offset = 1, a(n) is the number of collections C of subsets of {1,2,...,n} such that if S is in C then the complement of S is not in C. - Geoffrey Critzer, Feb 06 2017
LINKS
FORMULA
a(0) = 3 and a(n+1) = a(n)^2. - Benoit Jubin, Jun 27 2009
Sum_{n>=0} 1/a(n) = A078885. - Amiram Eldar, Nov 09 2020
Product_{n>=0} (1 + 1/a(n)) = 3/2. - Amiram Eldar, Jan 29 2021
a(n) = A000244(A000079(n)), or A011764 = A000244 o A000079. - M. F. Hasler, Jul 20 2023
MATHEMATICA
3^(2^Range[0, 10]) (* Harvey P. Dale, Oct 14 2012 *)
PROG
(Magma) [3^(2^n): n in [0..8]]; // Vincenzo Librandi, Sep 15 2011
(PARI) a(n)=3^2^n \\ Charles R Greathouse IV, Oct 03 2012
(Python)
def A011764(n): return 3**(1<<n) # Chai Wah Wu, Oct 09 2024
CROSSREFS
Subsequence of A000244 (powers of 3).
Sequence in context: A216206 A038062 A218149 * A018624 A274032 A032078
KEYWORD
nonn,easy
AUTHOR
Stephan Y Solomon (ilans(AT)way.com)
STATUS
approved