login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216204
Primes p=prime(i) of level (1,8), i.e., such that A118534(i) = prime(i-8).
1
259033, 308153, 343831, 377393, 576227, 597697, 780733, 990397, 1408889, 1643893, 1648613, 1678777, 1910179, 1942207, 2045377, 2049191, 2073403, 2388703, 2403701, 2430611, 2448883, 2481517, 2572529, 2710457, 2827687, 2982697, 3376859, 3404579, 3942413, 4119419
OFFSET
1,1
COMMENTS
If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
Subsequence of A125830 and of A162174.
LINKS
EXAMPLE
343831 = prime(24490) is a term because:
prime(24491) = 343891, prime(24382) = 343771;
2*prime(24490) - prime(24491) = prime(24382).
MATHEMATICA
With[{m = 8}, Prime@ Select[Range[m + 1, 2*10^5], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
PROG
(PARI) lista(nn) = my(v=primes(9)); forprime(p=29, nn, if(2*v[9]-p==v[1], print1(v[9], ", ")); v=concat(v[2..9], p)); \\ Jinyuan Wang, Jun 18 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Fabien Sibenaler, Mar 12 2013
STATUS
approved