login
A125574
Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14).
5
31515413, 69730637, 132102911, 132375259, 215483129, 284491367, 325689253, 388190689, 548369603, 620829113, 633418787, 638213603, 670216277, 793852487, 797759539, 960200149, 1038197399, 1050359137, 1092920249, 1331713301, 1342954871, 1349496367, 1365964199
OFFSET
1,1
COMMENTS
This subsequence of A125830 and of A162174 gives primes of level (1,14): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
LINKS
EXAMPLE
prime(15456800) - prime(15456799) = 284491601 - 284491367 = 284491367 - 284491133 = prime(15456799) - prime(15456799-14) and prime(15456799) has level 1 in A117563, so prime(15456799) = 284491367 has level (1,14).
PROG
(PARI) lista(nn) = my(c=15, v=primes(15)); forprime(p=53, nn, if(2*v[c]-p==v[c=c%15+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021
CROSSREFS
Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.
Sequence in context: A182088 A209786 A251530 * A215414 A151621 A052097
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009
STATUS
approved