login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125576 Primes p=prime(i) of level (1,15), i.e., such that A118534(i)=prime(i-15). 7
264426203, 295902073, 361949821, 704544167, 1075639757, 1259347393, 1290546427, 1301756207, 1335396547, 1370742383, 1460811643, 1497078991, 1514647247, 1643839649, 1783137281, 2142070103, 2424093281, 2471124197, 2494743721, 2577014057, 2706824389, 2951139253 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This subsequence of A125830 and of A162174 gives primes of level (1,15): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

LINKS

Fabien Sibenaler, Table of n, a(n) for n = 1..100

EXAMPLE

prime(16042282) - prime(16042281) = 295902247 - 295902073 = 295902073 - 295901899 = prime(16042281) - prime(16042281-15) and prime(16042281) has level 1 in A117563, so prime(16042281)=295902073 has level (1,15).

PROG

(PARI) lista(nn) = my(c=16, v=primes(16)); forprime(p=59, nn, if(2*v[c]-p==v[c=c%16+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021

CROSSREFS

Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

Sequence in context: A250433 A329464 A332314 * A233501 A295477 A011578

Adjacent sequences:  A125573 A125574 A125575 * A125577 A125578 A125579

KEYWORD

nonn,changed

AUTHOR

Rémi Eismann and Fabien Sibenaler, Jan 27 2007

EXTENSIONS

Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009

Terms a(5) and beyond from b-file by Andrew Howroyd, Feb 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 12:08 EDT 2021. Contains 345401 sequences. (Running on oeis4.)