The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125577 a(0) = 1; for n >= 1, a(n) = n^2 - a(n-1). 3
1, 0, 4, 5, 11, 14, 22, 27, 37, 44, 56, 65, 79, 90, 106, 119, 137, 152, 172, 189, 211, 230, 254, 275, 301, 324, 352, 377, 407, 434, 466, 495, 529, 560, 596, 629, 667, 702, 742, 779, 821, 860, 904, 945, 991, 1034, 1082, 1127, 1177, 1224, 1276, 1325, 1379, 1430 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
A sequence given by a recurrence that is almost polynomial; it cannot be expressed as a polynomial, but is bounded by n^2.
If we let a(0) = 0, the triangular numbers result; a typo led to the new sequence.
LINKS
FORMULA
O.g.f.: (-1+2*x-4*x^2+x^3)/((-1+x)^3*(1+x)). a(n) = -n-1+(-1)^n+A000217(n+1). - R. J. Mathar, Dec 05 2007
a(n) = n*(n+1)/2 + (-1)^n = A000217(n) + (-1)^n. - Franklin T. Adams-Watters, Jul 13 2014
E.g.f.: exp(x)*(x+x^2/2) + exp(-x). - Franklin T. Adams-Watters, Jul 13 2014
EXAMPLE
a(0)=1, so a(1) = 1^2 - 1 = 0; a(2) = 2^2 - 0 = 4; a(3) = 9 - 4 = 5; etc.
MATHEMATICA
a[0] := 1 a[n_] := n^2 - a[n - 1]
CoefficientList[Series[(-1 + 2 x - 4 x^2 + x^3)/((-1 + x)^3 (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, May 19 2014 *)
PROG
(Python)
a = 1
for n in range(1, 77):
print(a, end=', ')
a = n*n - a
(Magma) [1] cat [n le 1 select n-1 else n^2-Self(n-1): n in [1..50]]; // Vincenzo Librandi, May 19 2014
CROSSREFS
Cf. A000217.
Sequence in context: A084812 A050018 A347513 * A053307 A076065 A176115
KEYWORD
nonn,easy
AUTHOR
John C. George (John.George(AT)ENMU.edu), Jan 03 2007
EXTENSIONS
Name corrected by Alex Ratushnyak, Aug 03 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 05:27 EDT 2024. Contains 373393 sequences. (Running on oeis4.)