login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118534
a(n) is the largest k such that prime(n+1) = prime(n) + (prime(n) mod k), or 0 if no such k exists.
54
0, 0, 3, 0, 9, 9, 15, 15, 17, 27, 25, 33, 39, 39, 41, 47, 57, 55, 63, 69, 67, 75, 77, 81, 93, 99, 99, 105, 105, 99, 123, 125, 135, 129, 147, 145, 151, 159, 161, 167, 177, 171, 189, 189, 195, 187, 199, 219, 225, 225, 227, 237, 231, 245, 251, 257, 267, 265, 273, 279
OFFSET
1,3
COMMENTS
a(n) = prime(n) - g(n) or A000040(n) - A001223(n) if prime(n) - g(n) > g(n), 0 otherwise.
a(n) = 0 only for primes 2, 3 and 7.
Under the twin prime conjecture prime(n+1)-prime(n) = 2 infinitely often, and from that we can conclude that k=prime(n)-2 infinitely often. [Roderick MacPhee, Jul 24 2012]
a(n) = A062234(n) for 5 <= n <= 1000. - Georg Fischer, Oct 28 2018
LINKS
EXAMPLE
n=5: prime(5) = 11, prime(6) = 13, 13 = 11 + (11 mod 3) = 11 + (11 mod 9), so A117078(5) = 3, a(5) = 9 and A117563(5) = 9/3 = 3. Thus 11 has level 3 and so is a member of A117873.
MATHEMATICA
a[n_] := If[n == 1 || n == 2 || n == 4, 0, 2Prime[n] - Prime[n + 1]]; Array[a, 62] (* Robert G. Wilson v, May 09 2006 *)
CROSSREFS
Cf. A062234, A117078; essentially the same as A117563.
Sequence in context: A080407 A197335 A248885 * A187427 A167352 A318303
KEYWORD
nonn,easy
AUTHOR
Rémi Eismann, Apr 18 2006, Feb 14 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 07 2006
More terms from Robert G. Wilson v, May 09 2006
STATUS
approved