The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187427 Expansion of q^(3/8) * eta(q)^3 / eta(q^3)^4 in powers of q. 2
 1, -3, 0, 9, -12, 0, 27, -42, 0, 82, -111, 0, 207, -279, 0, 486, -630, 0, 1055, -1362, 0, 2205, -2775, 0, 4374, -5472, 0, 8427, -10389, 0, 15696, -19224, 0, 28539, -34614, 0, 50630, -61059, 0, 88119, -105483, 0, 150417, -179178, 0, 252727, -299325, 0, 418068 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 FORMULA Euler transform of period 3 sequence [ -3, -3, 1, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = (9/8)^(1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A187428. G.f.: Product_{k>0} (1 - x^k)^3 / (1 - x^(3*k))^4. a(3*n) = A053762(n). a(3*n + 1) = -3 * A187428(n). a(3*n + 2) = 0. EXAMPLE 1 - 3*x + 9*x^3 - 12*x^4 + 27*x^6 - 42*x^7 + 82*x^9 - 111*x^10 + ... q^-3 - 3*q^5 + 9*q^21 - 12*q^29 + 27*q^45 - 42*q^53 + 82*q^69 - 111*q^77 + ... MATHEMATICA QP = QPochhammer; s = QP[q]^3/QP[q^3]^4 + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *) eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(3/8) *eta[q]^3/ eta[q^3]^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 14 2018 *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 / eta(x^3 + A)^4, n))} CROSSREFS Cf. A053762, A187248. Sequence in context: A197335 A248885 A118534 * A167352 A318303 A336710 Adjacent sequences: A187424 A187425 A187426 * A187428 A187429 A187430 KEYWORD sign AUTHOR Michael Somos, Mar 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 14:57 EDT 2024. Contains 374611 sequences. (Running on oeis4.)