login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187429
Expansion of q^(3/8) * a(q) / eta(q^3)^3 in powers of q where a() is a cubic AGM function.
1
1, 6, 0, 9, 24, 0, 27, 84, 0, 82, 222, 0, 207, 558, 0, 486, 1260, 0, 1055, 2724, 0, 2205, 5550, 0, 4374, 10944, 0, 8427, 20778, 0, 15696, 38448, 0, 28539, 69228, 0, 50630, 122118, 0, 88119, 210966, 0, 150417, 358356, 0, 252727, 598650, 0, 418068, 986022
OFFSET
0,2
LINKS
J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701.
FORMULA
Expansion of q^(3/8) * (eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3)^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (192 t)) = (3/8)^(1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A053762.
a(3*n) = A053762(n). a(3*n+ 1) = 6 * A187428(n). a(3*n + 2) = 0.
EXAMPLE
G.f. = 1 + 6*x + 9*x^3 + 24*x^4 + 27*x^6 + 84*x^7 + 82*x^9 + 222*x^10 + ...
G.f. = q^-3 + 6*q^5 + 9*q^21 + 24*q^29 + 27*q^45 + 84*q^53 + 82*q^69 + 222*q^77 + ...
MATHEMATICA
a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x + A]^3 + 9*x*QPochhammer[x^9 + A]^3)/QPochhammer[x^3 + A]^4, {x, 0, n}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A)^4, n))}
CROSSREFS
Sequence in context: A176403 A153314 A019622 * A083573 A117006 A294345
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 09 2011
STATUS
approved