login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294345
Sum of the products of the smaller and larger parts of the Goldbach partitions of n into two distinct parts.
1
0, 0, 0, 0, 6, 0, 10, 15, 14, 21, 0, 35, 22, 33, 26, 94, 0, 142, 34, 142, 38, 142, 0, 357, 46, 202, 0, 302, 0, 591, 58, 334, 62, 491, 0, 980, 0, 217, 74, 821, 0, 1340, 82, 785, 86, 827, 0, 1987, 94, 1512, 0, 1353, 0, 2677, 106, 1421, 0, 1479, 0, 4242, 118
OFFSET
1,5
COMMENTS
Sum of the areas of the distinct rectangles with prime length and width such that L + W = n, W < L. For example, a(14) = 33; the only rectangle is 3 X 11 and 3*11 = 33 (the 7 X 7 rectangle is not considered since we have W < L).
FORMULA
a(n) = Sum_{i=2..floor((n-1)/2)} i * (n-i) * c(i) * c(n-i), where c is the prime characteristic (A010051).
a(k) = 0, for k in A166081. - Michel Marcus, Oct 30 2017
EXAMPLE
a(22) = 142; the Goldbach partitions of 22 are (19,3), (17,5) and (11,11) (we do not consider (11,11) since we only count prime parts which are distinct). Then the sum of the products of the smaller and larger parts from each partition is 19*3 + 17*5 = 142.
MAPLE
with(numtheory): A294345:=n->add(i*(n-i)*(pi(i)-pi(i-1))*(pi(n-i)-pi(n-i-1)), i=2..floor((n-1)/2)): seq(A294345(n), n=1..100);
MATHEMATICA
Table[Sum[i (n - i) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i] - PrimePi[n - i - 1]), {i, 2, Floor[(n-1)/2]}], {n, 60}]
Table[Total[Times@@@Select[IntegerPartitions[n, {2}], AllTrue[#, PrimeQ] && #[[1]]!=#[[2]]&]], {n, 70}] (* Harvey P. Dale, Jul 29 2021 *)
PROG
(PARI) a(n) = sum(i=1, (n-1)\2, i*isprime(i)*(n-i)*isprime(n-i)); \\ Michel Marcus, Nov 08 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 28 2017
STATUS
approved