OFFSET
1,5
COMMENTS
Sum of the areas of the distinct rectangles with prime length and width such that L + W = n, W < L. For example, a(14) = 33; the only rectangle is 3 X 11 and 3*11 = 33 (the 7 X 7 rectangle is not considered since we have W < L).
LINKS
Eric Weisstein's World of Mathematics, Goldbach Partition
Wikipedia, Goldbach's conjecture
FORMULA
a(n) = Sum_{i=2..floor((n-1)/2)} i * (n-i) * c(i) * c(n-i), where c is the prime characteristic (A010051).
a(k) = 0, for k in A166081. - Michel Marcus, Oct 30 2017
EXAMPLE
a(22) = 142; the Goldbach partitions of 22 are (19,3), (17,5) and (11,11) (we do not consider (11,11) since we only count prime parts which are distinct). Then the sum of the products of the smaller and larger parts from each partition is 19*3 + 17*5 = 142.
MAPLE
MATHEMATICA
Table[Sum[i (n - i) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - i] - PrimePi[n - i - 1]), {i, 2, Floor[(n-1)/2]}], {n, 60}]
Table[Total[Times@@@Select[IntegerPartitions[n, {2}], AllTrue[#, PrimeQ] && #[[1]]!=#[[2]]&]], {n, 70}] (* Harvey P. Dale, Jul 29 2021 *)
PROG
(PARI) a(n) = sum(i=1, (n-1)\2, i*isprime(i)*(n-i)*isprime(n-i)); \\ Michel Marcus, Nov 08 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 28 2017
STATUS
approved