login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294346
E.g.f.: exp( Sum_{n>=1} sigma(n!) * x^n/n! ).
1
1, 1, 4, 22, 154, 1306, 12874, 145954, 1843660, 25840684, 397040064, 6637371896, 119517187984, 2310108276048, 47619441310520, 1042743337601320, 24164137431011184, 590726322945970352, 15184954152657360064, 409428979786326488096, 11550423660014156192096, 340219279585618435264480, 10442779307230643663779424, 333425628200639984852617568, 11055838405832227887079632832
OFFSET
0,3
COMMENTS
Compare e.g.f. to exp( Sum_{n>=1} sigma(n) * x^n/n ) = Product_{n>=1} 1/(1 - x^n).
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 22*x^3/3! + 154*x^4/4! + 1306*x^5/5! + 12874*x^6/6! + 145954*x^7/7! + 1843660*x^8/8! + 25840684*x^9/9! + 397040064*x^10/10! + 6637371896*x^11/11! + 119517187984*x^12/12! +...
such that
log(A(x)) = x + sigma(2!)*x^2/2! + sigma(3!)*x^3/3! + sigma(4!)*x^4/4! + sigma(5!)*x^5/5! + sigma(6!)*x^6/6! +...+ sigma(n!)*x^n/n! +...
Explicitly,
log(A(x)) = x + 3*x^2/2! + 12*x^3/3! + 60*x^4/4! + 360*x^5/5! + 2418*x^6/6! + 19344*x^7/7! + 159120*x^8/8! + 1481040*x^9/9! + 15334088*x^10/10! + 184009056*x^11/11! + 2217441408*x^12/12! +...+ A062569(n)*x^n/n! +...
PRODUCT.
A(x) = 1 / ((1-x) * (1-x^2)^(2/2!) * (1-x^3)^(10/3!) * (1-x^4)^(42/4!) * (1-x^5)^(336/5!) * (1-x^6)^(1458/6!) * (1-x^7)^(18624/7!) * (1-x^8)^(108720/8!) * (1-x^9)^(1239120/9!) * (1-x^10)^(9165128/10!) * (1-x^11)^(180380256/11!) * (1-x^12)^(1133700288/12!) *...).
PROG
(PARI) {a(n) = n!*polcoeff( exp( sum(m=1, n+1, sigma(m!) * x^m/m!) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A062569.
Sequence in context: A062817 A196275 A000307 * A049376 A083410 A295553
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2017
STATUS
approved