login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294344
a(n) = ((-9*n + 82)*10^n - 1)/81.
2
1, 9, 79, 679, 5679, 45679, 345679, 2345679, 12345679, 12345679, -987654321, -20987654321, -320987654321, -4320987654321, -54320987654321, -654320987654321, -7654320987654321, -87654320987654321, -987654320987654321, -10987654320987654321, -120987654320987654321
OFFSET
0,2
FORMULA
From Colin Barker, Oct 29 2017: (Start)
G.f.: (1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)
EXAMPLE
Curious multiplications:
9 * 8 = 72;
79 * 8 = 632;
679 * 8 = 5432;
5679 * 8 = 45432;
45679 * 8 = 365432;
345679 * 8 = 2765432;
2345679 * 8 = 18765432.
9 * 9 = 81;
79 * 9 = 711;
679 * 9 = 6111;
5679 * 9 = 51111;
45679 * 9 = 411111;
345679 * 9 = 3111111;
2345679 * 9 = 21111111.
MATHEMATICA
LinearRecurrence[{21, -120, 100}, {1, 9, 79}, 30] (* Harvey P. Dale, Mar 12 2018 *)
PROG
(PARI) Vec((1 - 12*x + 10*x^2) / ((1 - x)*(1 - 10*x)^2) + O(x^30)) \\ Colin Barker, Oct 29 2017
CROSSREFS
Cf. A294328.
Sequence in context: A293721 A198857 A126632 * A125909 A125421 A163445
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Oct 28 2017
STATUS
approved